Блок питания 30 вольт


Лабораторный блок питания своими руками

У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания. У меня на столе в данный момент лежат  два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

Ну еще есть и самопальный блок питания:

Вот здесь можно прочитать про его сборку.

Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже  пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:

Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

— выходное напряжение можно регулировать в диапазоне от  0 и до 30 Вольт

— можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

— очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

— защита от перегрузки и неправильного подключения

— на блоке питания путем короткого замыкания (КЗ) «крокодилов» устанавливается максимально допустимый ток. Т.е. ограничение по току, которое вы выставляете переменным резистором по амперметру. Следовательно перегрузки не страшны. Сработает индикатор (светодиод) обозначающий превышение установленного уровня тока.

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):

 

Цифры в кружочках — это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме: — 1 и 2 к трансформатору. — 3 (+) и 4 (-) выход постоянного тока. — 5, 10 и 12 на P1. — 6, 11 и 13 на P2.

— 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение  24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер  в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост.  Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше.  Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

На восьмом выводе написано «NC», что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А

Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!

Вот его распиновка:

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство — это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

У нас вот так:

Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

R1 = 2,2 кОм 1W R2 = 82 Ом 1/4W R3 = 220 Ом 1/4W R4 = 4,7 кОм 1/4W R5, R6, R13, R20, R21 = 10 кОм 1/4W R7 = 0,47 Ом 5W R8, R11 = 27 кОм 1/4W R9, R19 = 2,2 кОм 1/4W R10 = 270 кОм 1/4W R12, R18 = 56кОм 1/4W R14 = 1,5 кОм 1/4W R15, R16 = 1 кОм 1/4W R17 = 33 Ом 1/4W R22 = 3,9 кОм 1/4W RV1 = 100K многооборотный подстроечный резистор P1, P2 = 10KOhm линейный потенциометр C1 = 3300 uF/50V электролитический C2, C3 = 47uF/50V электролитический C4 = 100нФ C5 = 200нФ C6 = 100пФ керамический C7 = 10uF/50V электролитический C8 = 330пФ керамический C9 = 100пФ керамический D1, D2, D3, D4 = 1N5401…1N5408 D5, D6 = 1N4148 D7, D8 = стабилитроны на 5,6V D9, D10 = 1N4148 D11 = 1N4001 диод 1A Q1 = BC548 или BC547 Q2 = КТ961А Q3 = BC557 или BC327 Q4 = КТ 827А U1, U2, U3 = TL081, операционный усилитель

D12 = светодиод

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)

Далее с помощью ЛУТа сделал печатную плату (печатка и описание работы блока питания будут в конце статьи по ссылке):

протравил

отмыл тонер

просверлил отверстия:

Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:

А вот так плата выглядит уже с полным монтажом:

Подготавливаем место под платку в нашем корпусе:

Приделываем к корпусу радиатор:

Не забываем про кулер, который будет охлаждать наши транзисторы:

Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?

Описание работы, печатку и список радиоэлементов я взял здесь в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке

www.ruselectronic.com

Мощный блок питания 30 вольт 20 ампер на 2N3055

Мощный блок питания 30 вольт 20 ампер на 2N3055
Мощный лабораторный регулируемый блок питания собран на микросхеме LM723, которая представляет собой интегральный готовый стабилизатор с регулируемым выходным напряжением и неплохой схемой защиты от перегрузки. Выходное напряжение блока питания от 2 до 30 вольт с максимальным выходным током 20 ампер. Устройство состоит из двух систем, а именно: схема стабилизатора на LM723 и выходной регулятор напряжения на транзисторах VТ1-VТ5, мощные транзисторы VТ2-VТ5 которого включены параллельно. Резисторы R4 R6 R8 R10 служат для уравнивания тока через транзисторы, так как в результате различий в коэффициентах передачи они могут при равных условиях открываться в разной степени. Схема защиты от перегрузки по току работает по измерению напряжения на сопротивлении, включенном последовательно нагрузке. Входами датчика тока являются выводы 2 и 3 микросхемы LM723. Эти выводы подключены параллельно сопротивлению, образованному резисторами R5 R7 R9 R11, которые включены последовательно с нагрузкой. Пока напряжение между выводами 2 и 3 меньше 0,6 вольт защита не срабатывает, но как только выходной ток начинает превышать 20 ампер, а напряжение между выводами 2 и 3 соответственно достигает 0,6 вольт, происходит срабатывание защиты, заключающееся в снижении напряжения на выводе 10 LM723 до 0 вольт, что тем самым отключает нагрузку.

Транзисторы VT2-VT5 устанавливаем на алюминиевые ребристые теплоотводы, для обеспечения их эффективного охлаждения. Выпрямительный диодный мост можно заменить другим на постоянный ток от 30 ампер. Кремниевые импортные транзисторы 2N3055 можно заменить на отечественные кремниевые КТ819. Резисторы R4 - R11 — 5 Вт, проволочные.

  При работе с повышающими преобразователями (инверторами) соблюдайте особую осторожность, так как присутствует высокое напряжение, налаживать и паять строго в отключённом состоянии прибора! Радиокомпоненты устройства могут быть как отечественными так и зарубежными: D1 - MB356 - диодный мост FU1 - плавкий предохранитель на 25 ампер C1, C2 - 10000 мкФ х 50 вольт C3 - 100 nF C4 - 0,1 мкФ х 50 вольт C5 - 1000 мкФ х 50 вольт R1 - 1 кОм R2 - 10 кОм - переменный R3 - 680 Ом R4 - R11 - 0,1 Ом R12 - 15 кОм R13 - 3,9 кОм Стабилизатор - LM723 VT1 - VT4 - 2N3055

VT5 - BD131

radiohome.ru

Лабораторный блок питания от 0 - 30 Вольт от 0,002 - 3 А

01.10.2012

Сегодня мы соберем лабораторный блок питания своими руками. Разберемся в устройстве блока, подберем правильные компоненты, научимся правильно паять, собирать элементы на печатные платы.

Это — высококачественный лабораторный (и не только) блок питания с переменным регулируемым напряжением от 0 до 30 вольт. Цепь также включает электронный ограничитель по току на выходе, который эффективно регулирует выходной ток 2 мА из максимально возможного в этой цепи (3 А). Данная характеристика делает этот блок питания незаменимым в лаборатории, так как она дает возможность регулировать мощность, ограничивать максимальный ток, который подключаемое устройство может потреблять, без боязни ее повреждения, если что-то пойдет не так. Есть также визуальный признак того, что этот ограничитель действует (светодиод), чтобы Вы могли видеть, что ваша цепь превышает допустимые пределы.

Принципиальная схема лабораторного блока питания представлена ниже:

Технические характеристики лабораторного блока питания

Входное напряжение: ……………. 24 В- переменного тока; Входной ток: ……………. 3 А (макс.); Выходное напряжение: …………. 0-30 В — регулируемое; Выходной ток: …………. 2 мА -3 А- регулируемый; Пульсация выходного напряжения: …. 0,01% максимум.

Особенности

— Небольшой размер, легко сделать, простая конструкция.  — Выходное напряжение легко регулируется.  — Ограничение выходного тока с визуальной индикацией.  — Защита от перегрузки и неправильного подключения.

Принцип работы

Начнем с того, что для лабораторного блока питания используется трансформатор с вторичной обмоткой 24В/3А, который подключается через входные зажимы 1 и 2 (качество выходного сигнала пропорционально качеству трансформатора). Напряжение переменного тока с вторичной обмотки трансформатора выпрямляется диодным мостом, сформированным диодами D1-D4. Пульсации выпрямленного напряжения DC на выходе диодного моста сглаживает фильтр, образованный резистором R1 и конденсатором С1. Цепь имеет некоторые особенности, которые делают этот блок питания отличным от других блоков этого класса.

Вместо использования обратной связи для управления выходным напряжением, в нашей цепи используется операционный усилитель, чтобы обеспечивать необходимое напряжение для стабильной работы. Это напряжение падает на выходе U1. Цепь работает благодаря зенеровскому диоду D8 — 5.6 V, который здесь работает при нулевом температурном коэффициенте тока. Напряжение на выходе U1 падает на диоде D8 включая его. Когда это происходит цепь стабилизируется также напряжение диода (5.6) падает на резисторе R5.

Ток который течет через опер. усилитель изменяется незначительно, а значит тот же ток будет течь через резисторы R5, R6, и так как оба резистора имеют одинаковую величину напряжения, то общее напряжение будет суммироваться как при их последовательном соединении. Таким образом напряжение, полученное на выходе опер. усилителя будет равно 11.2 вольт. Цепь с опер. усилителем U2 имеет постоянный коэффициент усиления приблизительно равный 3,согласно формуле A=(R11+R12)/R11 увеличивает напряжения 11.2 вольт приблизительно до 33 вольт. Триммер RV1 и резистор R10 использованы для установки выходных параметров напряжения, чтобы оно не уменьшилось до 0 вольт, независимо от величины других компонентов в цепи.

Другая очень важная характеристика цепи — это возможность получить максимальный выходной ток, который можно получить из p.s.u. Чтобы сделать это возможным напряжение падает на резисторе (R7), который связан последовательно с нагрузкой. IC отвечающий за эту функцию цепи — U3. Инвертированный сигнал на вход U3 равный 0 вольт подается через R21. В то же самое время, не изменяя сигнала того же самого IC можно задать любое значение напряжения посредством P2. Допустим, что для данного выхода напряжение равно несколько вольт, P2 установлен так, чтобы на входе IC был сигнал в 1 вольт. Если нагрузку усилить выходное напряжение будет постоянным и наличие R7 последовательно соединенного с выходом будет иметь незначительный эффект из-за своей низкой величины и из-за своей позиции за пределами цикла обратной связи управляющей цепи. Пока нагрузка и выходное напряжение постоянны цепь стабильно работает. Если нагрузку увеличить, чтобы напряжение на R7 было больше, чем 1 вольт, U3 включен и стабилизируется в исходные параметры. U3 работает не изменяя сигнал к U2 через D9. Таким образом напряжение через R7 постоянно и не увеличивается выше заданной величины (1 вольт в нашем примере) уменьшая выходное напряжение цепи. Это под силу устройству — поддерживать выходной сигнал постоянным и точным, что дает возможность получать на выходе 2 mA.

Конденсатор C8 делает цепь более устойчивой. Q3 необходим для управления LED всякий раз, когда вы используете индикатор ограничителя. Чтобы сделать это возможным для U2 (изменял выходное напряжение вплоть до 0 вольт) необходимо обеспечить отрицательную связь, которая делается посредством цепи C2 и C3. Та же отрицательная связь использована для U3. Отрицательное напряжение подается стабилизируясь посредством R3 и D7.

 Для избежания неконтролируемых ситуаций есть своеобразная цепь защиты, построенная вокруг Q1. IC имеет внутреннюю защиту и не может быть поврежден. 

U1- источник опорного напряжения, U2 — регулятор напряжения, U3 — стабилизатор тока.

Конструкция блока питания.

Прежде всего, давайте рассмотрим основы в построении электронных цепей на печатных платах — основы любого лабораторного блока питания. Плата сделана из тонкого изоляционного материала покрытого тонким проводящим слоем меди, которая формируется таким образом, чтобы элементы цепи можно было соединить проводниками как показано на принципиальной схеме. Необходимо правильно спроектировать печатную плату для избежания неправильной работы устройства. Для защиты платы в дальнейшем от окисления и сохранения ее в отличном состоянии ее необходимо покрыть специальным лаком, который защищает от окисления и облегчает пайку. Пайка элементов в плату — единственный способ собрать лабораторный блок питания качественно и от того как вы это сделаете, будет зависеть успех вашей работы. Эта не очень сложно, если вы будете следовать нескольким правилам и тогда у вас не будет никаких проблем. Мощность паяльника, который вы используете, не должна превышать 25 Ватт. Жало должно быть тонким и чистым на протяжении всей работы. Для этого есть влажная своеобразная губка и время от времени вы можете очищать горячее жало, чтобы удалить все остатки, которые накапливаются на нем.

  • НЕ пытайтесь очистить напильником или наждачной бумагой грязное или изношенное жало. Если оно не может быть очищено, замените его. На рынке есть много разнообразных паяльников, и вы также можете купить хороший флюс, чтобы получить хорошее соединение элементов во время пайки.
  • НЕ используйте флюс если вы пользуетесь припоем, который уже содержит его. Большое количество флюса — одна из основных причин сбоя цепи. Если тем не менее вы должны использовать дополнительный флюс как при лужении медных проводов, необходимо очистить рабочую поверхность после окончания работы.

Для того, чтобы припаять элемент правильно, вы должны делать следующее: — Зачищать выводы элементов наждачной бумагой (желательно с небольшим зерном). — Сгибать выводы компонентов на правильном расстоянии от выхода из корпуса для удобного расположения на плате. — Вы можете встретить элементы, выводы которых толще, чем отверстия в плате. В этом случае необходимо немного расширить отверстия, но не делайте их слишком большими – это затруднит пайку. — Вставить элемент необходимо так, чтобы его выводы немного выступали от поверхности платы. — Когда припой расплавится, он равномерно растечется по всей области вокруг отверстия (добиться этого можно при правильной температуре паяльника). — Пайка одного элемента должна быть не более 5 секунд. Удалите излишки припоя и дождитесь пока припой на плате остынет естественно (не дуя на него). Если все сделали правильно, поверхность должна иметь яркий металлический оттенок, края должны быть гладкими. Если припой выглядит тусклыми, с трещинами, или имеет форму капли, то это называется сухой пайкой. Вы должны удалить его и сделать все снова. Но будьте осторожны, чтобы не перегреть дорожки, иначе они будут отставать от платы и легко ломаться. — Когда вы паяете чувствительный элемент, необходимо держать его металлическим пинцетом или щипцами, которые будут поглощать лишнее тепло, чтобы не сжечь элемент.

— Когда вы завершаете вашу работу, обрежьте избыток от выводов элемента и можете очистить плату спиртом, чтобы удалить все остатки флюса.

Перед началом сборки блока питания необходимо найти все элементы и разделить их по группам. Для начала установите гнёзда для ICs и выводы для внешних связей и припаяйте их на свои места. Затем резисторы. Не забудьте разместить R7 на определенном расстоянии от печатной платы так как он очень сильно нагревается, особенно когда течет большой ток, и это может повредить её. Это также рекомендуется сделать для R1. затем размещайте конденсаторы не забывая про полярность электролитического и наконец припаивайте диоды и транзисторы, но будьте осторожны, чтобы не перегреть их и припаять их так как показано на схеме. Установите силовой транзистор в heatsink. Чтобы сделать это необходимо следить за диаграммой и не забывать использовать изолятор (слюда) между телом транзистора и heatsink и специальное очищающее волокно, чтобы изолировать винты от heatsink.

Подсоедините изолированный провод к каждому выводу, будьте осторожны, чтобы сделать хорошее качественное соединение, так как здесь течет большой ток, особенно между эмиттером и коллектором транзистора. Также при сборке блока питания неплохо было бы прикинуть где какой элемент будет находиться, для того, чтобы вычислить длину проводов, которые будут между PCB и потенциометрами, силовым транзистором и для входной и выходной связей.

Соедините потенциометры, LED и силовой транзистор и подключайте две пары концов для входной и выходной связей. Убедитесь по диаграмме, что вы все делаете правильно, старайтесь ни чего не перепутать, так как в цепи 15 внешних связей и допустив ошибку ее потом сложно будет найти. Также было бы неплохо использовать провода разных цветов.

Печатная плата лабораторного блока питания, ниже будет ссылка на скачивание печатки в формате .lay :

Схема расположения элементов на плате блока питания:

Схема соединения переменных резисторов (потенциометров) для регулирования выходного тока и напряжения, а также соединение контактов силового транзистора блока питания:

Обозначение выводов транзисторов и операционного усилителя:

Обозначение клемм на схеме: — 1 и 2 к трансформатору. — 3 (+) и 4 (-) ВЫХОД DC. — 5, 10 и 12 на P1. — 6, 11 и 13 на P2. — 7 (E), 8 (B), 9 (E) к транзистору Q4.

— LED нужно установить на внешней стороне платы.

Когда все внешние связи сделаны необходимо проверить плату и почистить ее, чтобы удалить остатки припоя. Убедитесь, что нет соединения между смежными дорожками которое может привести к короткому замыканию и если все хорошо — подсоедините трансформатор. И подключите вольтметр . НЕ КАСАЙТЕСЬ ЛЮБОГО УЧАСТКА ЦЕПИ ПОКА ОН ПОД НАПРЯЖЕНИЕМ. Вольтметр должен показывать напряжение от 0 до 30 вольт в зависимости от того, в каком положении P1. Поворот P2 против часовой стрелки должен включать LED, показывая, что наш ограничитель работает.

Список элементов.  

R1 = 2,2 кОм 1W R2 = 82 Ом 1/4W R3 = 220 Ом 1/4W R4 = 4,7 кОм 1/4W R5, R6, R13, R20, R21 = 10 кОм 1/4W R7 = 0,47 Ом 5W R8, R11 = 27 кОм 1/4W R9, R19 = 2,2 кОм 1/4W R10 = 270 кОм 1/4W R12, R18 = 56кОм 1/4W R14 = 1,5 кОм 1/4W R15, R16 = 1 кОм 1/4W R17 = 33 Ом 1/4W R22 = 3,9 кОм 1/4W RV1 = 100K триммер P1, P2 = 10KOhm линейный потенциометр C1 = 3300 uF/50V электролитический C2, C3 = 47uF/50V электролитический C4 = 100нФ полиэстр C5 = 200нФ полиэстр C6 = 100пФ керамический C7 = 10uF/50V электролитический C8 = 330пФ керамический C9 = 100пФ керамический D1, D2, D3, D4 = 1N5402,3,4 диод 2A — RAX GI837U D5, D6 = 1N4148 D7, D8 = 5,6V зенеревский D9, D10 = 1N4148 D11 = 1N4001 диод 1A Q1 = BC548, NPN транзистор или BC547

Q2 = 2N2219 NPN транзистор — (Заменяют на КТ961А — все работает)

Q3 = BC557, PNP транзистор или BC327

Q4 = 2N3055 NPN силовой транзистор (заменить на КТ 827А)

U1, U2, U3 = TL081, опер. усилитель

D12 = LED диод

В итоге я самостоятельно собрал лабораторный блок питания, но столкнулся на практике с тем, что считаю нужным подправить. Ну во первых это силовой транзистор Q4 = 2N3055 его нужно в срочном порядке вычеркнуть и забыть. Не знаю как других устройствах, но в данном регулируемом блоке питания он не подходит. Дело в том, что данный тип транзисторов выходит из строя моментально при коротко замыкании и ток в 3 ампера не тянет совершенно!!! Я не знал в чем дело пока не поменял его на наш родной совковый КТ 827 А.  После установки на радиатор я и горя не знал и больше не возвращался к этому вопросу.

Что же касается остальной схемотехники и деталей, то трудностей нет. За исключением трансформатор — мотать пришлось. Ну это чисто из-за жадности, пол ведра их стоит в углу — не покупать же =))

Ну и чтобы не нарушать старую добрую традицию, я выкладываю результат своей работы на общий суд 🙂 пришлось по шаманить с колонкой, но в целом получилось не дурно :

Собственно лицевая панель — вынес потенциометры в левую часть в правой разместились амперметр и вольтметр + светодиод красного цвета, для индикации ограничения по току.

На следующей фотографии вид сзади. Тут я хотел показать способ монтажа кулера с радиатором от материнской платы. На этот радиатор с обратной стороны примостился силовой транзистор.

Вот и он, силовой транзистор КТ 827 А. Смонтирован на заднюю стенку. Пришлось просверлить отверстия под ножки, смазать все контактные части теплопроводной пастой и закрепить на гайки.

Вот они….внутренности! Собственно все в куче!

Немного крупнее внутрь корпуса

Лицевая панель с другой стороны

Поближе, тут видно как смонтирован силовой транзистор и трансформатор.

Плата блока питания сверху; тут я схитрил и транзисторы маломощные упаковал снизу платы. Тут их не видно, так что не удивляйтесь если не найдете их.

Вот и трансформатор. Перемотал на 25 вольт выходного напряжения ТВС-250 Грубо, кисло, не эстетично зато все работает как часы =) Вторую часть не использовал. Оставил место для творчества.

Ну вот как-то так. Немного творчества и терпения. Блок работает замечательно уже 2 год. Для написания данный статьи мне пришлось его разобрать и заново собрать. Это просто ужас! Но все для вас, дорогие читатели!

Нет лучше чем один раз увидеть, чем 100 раз услышать, таким видео приятно поделиться, видео сборки и теста блока питания:

Конструкции наших читателей!

Скачать печатную плату:

Печатная плата в .lay

Печатная плата и конструкция от DDREDD — Перейти на сайт (печатка переработанная и уменьшенная, БП двух полярный и с жк дисплеем). Можно взять отсюда печатку! Остальное по желанию.

Программа для открытия файлов в формате .lay — Тут

Ссылка на английскую версию с доработками и заменой некоторых деталей — Читать

— Замена 2n2219 возможна на КТ961А, bd139 либо вообще его убрать  читайте на форуме

— Простое охлаждение силового транзистора — терморегулятор

— Более усложненный вариант — схема терморегулятора (От Kot)

Если у вас остались вопросы, либо вы в чем-то сомневаетесь можно обсудить статью на форуме

Хочу заметить, что на форме очень много уже разобранных вопросов, возможно ваш вопрос уже обсужден — не ленитесь, прочтите!

Лабораторный блок питания от 0 — 30 Вольт от 0,002 — 3 А Ссылка на основную публикацию

www.radioingener.ru

Простой блок питания 1,5-30 вольт 5 ампер

Блок питания выполнен на основе двух микросхем и кроме них содержит  всего несколько дискретных элементов. В связи с этим, он прост в изготовлении и настройке. В тоже время, блок питания отличается высокими показателями, такими как плавная регулировка напряжения в больших пределах, низкий коэффициент пульсаций, выходной ток до 5А с возможностью стабилизации тока, высокая надежность. Также, блок питания имеет защиту от короткого замыкания.

Трансформатор используется тот который выдает на вторичной обмотке 25-35 Вольт и при токе в 5 А его выходное напряжение снижается не сильно. 2 конденсатора по 4700мкФ соединенные параллельно обеспечивают низкий коэффициент пульсаций еще до интегрального стабилизатора напряжения на LM338. Потенциометром P1 можно менять выходное напряжение блока питания от 1.5В до 25В. Удобно установить два потенциометра последовательно для грубой и плавной регулировки напряжения. Сдвоенным переключателем SW2 подключается или отключается стабилизатор тока выполненный на микросхеме LM317. Стабилизатор тока позволяет ограничивать выходной ток блока питания в пределах 0…1.5 А

Вместо потенциометра P2 лучше использовать переключатель на 8-10 фиксированных значений так как потенциометром трудно установить желаемый ток. В таблице даны примерные значения выходного максимального тока в зависимости от номинала резистора подключенного между ножками Adj и Out микросхемы LM317

Ток

Сопротивление резистора

20 мА

62 Ом

30 мА

43 Ом

40 мА

33 Ом

80 мА

16 Ом

350 мА

3,9 Ом

750 мА

1,8 Ом

1000 мА

1,3 Ом

Блок питания в режиме стабилизации тока удобно использовать для зарядки аккумуляторов емкостью до 15АЧ.

В приборе использован вольтметр на 30В и амперметр на 5А.

Обе микросхемы снабжены радиаторами так как имеют свойство нагреваться особенно при больших значениях выходного тока, желательно использовать термопасту. Естественно радиаторы разные и не контактируют между собой. Хороший теплоотвод обеспечит надежную работу устройства. Плата, трансформатор и все органы управления и индикации помещаются в просторный корпус, в корпусе имеются отверстия для циркуляции воздуха.

LM338     Корпус - out                LM317

Способ намотки трансформатора: сперва наматывается первая обмотка виток к витку. Затем таким же образом наматываем вторичную обмотку, пока не заполнится все кольцо.

Автор: Веселов Андрей; Публикация: www.cxem.net

shema.info


Смотрите также