Плотность угарного газа


Физические свойства угарного газа: плотность, теплоемкость, теплопроводность CO

Рассмотрены физические свойства угарного газа (окиси углерода CO) при нормальном атмосферном давлении в зависимости от температуры при отрицательных и положительных ее значениях.

В таблицах представлены следующие физические свойства CO: плотность угарного газа ρ, удельная теплоемкость при постоянном давлении Cp, коэффициенты теплопроводности λ и динамической вязкости μ.

В первой таблице приведены значения плотности и удельной теплоемкости окиси углерода CO в диапазоне температуры от -73 до 2727°С.

Во второй таблице даны значения таких физических свойств угарного газа, как теплопроводность и его динамическая вязкость в интервале температуры от минус 200 до 1000°С. 

Плотность угарного газа, как и плотность других газов, существенно зависит от температуры — при нагревании оксида углерода CO его плотность снижается. Например, при комнатной температуре плотность угарного газа имеет значение 1,129 кг/м3, но в процессе нагрева до температуры 1000°С, плотность этого газа уменьшается в 4,2 раза — до величины 0,268 кг/м3.

При нормальных условиях (температура 0°С) угарный газ имеет плотность 1,25 кг/м3. Если же сравнить его плотность с воздухом или другими распространенными газами, то плотность угарного газа относительно воздуха имеет меньшее значение — угарный газ легче воздуха. Он также легче углекислого газа и аргона, но тяжелее азота, водорода, гелия и других легких газов.

Удельная теплоемкость угарного газа при нормальных условиях равна 1040 Дж/(кг·град). В процессе роста температуры этого газа его удельная теплоемкость увеличивается. Например, при 2727°С ее значение составляет 1329 Дж/(кг·град).

Плотность угарного газа CO и его удельная теплоемкость t, °С ρ, кг/м3 Cp, Дж/(кг·град) t, °С ρ, кг/м3 Cp, Дж/(кг·град) t, °С ρ, кг/м3 Cp, Дж/(кг·град)
-73 1,689 1045 157 0,783 1053 1227 0,224 1258
-53 1,534 1044 200 0,723 1058 1327 0,21 1267
-33 1,406 1043 257 0,635 1071 1427 0,198 1275
-13 1,297 1043 300 0,596 1080 1527 0,187 1283
-3 1,249 1043 357 0,535 1095 1627 0,177 1289
0 1,25 1040 400 0,508 1106 1727 0,168 1295
7 1,204 1042 457 0,461 1122 1827 0,16 1299
17 1,162 1043 500 0,442 1132 1927 0,153 1304
27 1,123 1043 577 0,396 1152 2027 0,147 1308
37 1,087 1043 627 0,374 1164 2127 0,14 1312
47 1,053 1043 677 0,354 1175 2227 0,134 1315
57 1,021 1044 727 0,337 1185 2327 0,129 1319
67 0,991 1044 827 0,306 1204 2427 0,125 1322
77 0,952 1045 927 0,281 1221 2527 0,12 1324
87 0,936 1045 1027 0,259 1235 2627 0,116 1327
100 0,916 1045 1127 0,241 1247 2727 0,112 1329

Теплопроводность угарного газа при нормальных условиях имеет значение 0,02326 Вт/(м·град). Она увеличивается с ростом его температуры и при 1000°С становится равной 0,0806 Вт/(м·град). Следует отметить, что величина теплопроводности угарного газа немногим меньше этой величины у воздуха.

Динамическая вязкость угарного газа при комнатной температуре равна 0,0246·10-7 Па·с. При нагревании окиси углерода, ее вязкость увеличивается. Такой характер зависимости динамической вязкости от температуры наблюдается у большинства газов. Необходимо отметить, что угарный газ более вязкий чем водяной пар и диоксид углерода CO2, однако имеет меньшую вязкость по сравнению с окисью азота NO и воздухом.

Теплопроводность и вязкость окиси углерода CO t, °С λ, Вт/(м·град) μ·107, Па·с t, °С λ, Вт/(м·град) μ·107, Па·с
-200 0,00603 48 200 0,03652 245
-160 0,009 74,5 300 0,04257 279
-140 0,01163 88 400 0,0485 309
-120 0,01349 102 500 0,05408 337
-100 0,01512 113 600 0,05966 363
-75 0,01698 127 700 0,06501 387
-50 0,0193 140 800 0,07013 410
0 0,02326 166 900 0,07548 433
100 0,03012 207 1000 0,08059 453

Источники:

Читайте также

thermalinfo.ru

Угарный газ: легче или тяжелее воздуха

Монооксид углерода (CO) — это токсический продукт сгорания без цвета и запаха, широко известен как угарный газ. Тяжелее или легче воздуха это вещество, зависит от внешних условий. Чаще всего оно образуется в процессе горения углерода в среде, бедной кислородом. Если происходит пожар в закрытом невентилируемом помещении, люди гибнут от отравления.Угарный газ не имеет цвета и запаха, поэтому его невозможно почувствовать

Свойства монооксида углерода

Угарный газ известен людям с давних времён из-за своих токсичных свойств. Тотальное использование печного отопления нередко приводило к отравлению и летальному исходу. Опасность угореть была у тех, кто прикрывал на ночь заслонку дымохода при ещё не догоревших углях в топке.

Коварство оксида углерода в том, что он не имеет цвета и запаха. Плотность угарного газа относительно воздуха немного меньше, благодаря чему он поднимается. Во время горения топлива происходит окисление углерода © кислородом (O), и выделяется углекислый газ (CO2). Для человека он безвреден и даже применяется в пищевой промышленности, при производстве газировки и сухого льда.

Данное видео расскажет вам, как выжить самому и оказать первую помощь пострадавшему в результате отравления угарным газом:

В случае, когда реакция происходит при недостаточном количестве кислорода, к каждой молекуле углерода присоединяется только одна молекула кислорода. На выходе получается CO — токсичный и горючий угарный газ.

Токсичность и симптомы отравления

Нередко превышение данного показателя можно встретить в крупных городах, что разумеется, вполне возможно может, является причиной плохого самочувствия людей

Токсичность оксида углерода обусловлена его свойством образовывать стойкое соединение с гемоглобином человеческой крови. В результате происходит кислородное голодание организма на клеточном уровне. Без своевременно оказанной медицинской помощи возможны необратимые изменения в тканях и смерть.

В первую очередь страдает центральная нервная система. Повреждение нервных тканей в результате гипоксии приводит к развитию неврологических расстройств, которые могут проявиться через некоторое время после отравления.

Отравление угарным газом — острое патологическое состояние, развивающееся в результате попадания угарного газа в организм человека

Получить интоксикацию угарным газом можно в таких ситуациях:

  1. При пожаре в закрытом помещении.
  2. Химическое производство, на котором широко применяется оксид углерода.
  3. При использовании газовых приборов открытого типа и недостаточной вентиляции.
  4. Длительное нахождение на автотрассе с оживлённым движением.
  5. В гараже при включённом двигателе.
  6. При неправильном использовании печи, если заслонки закрываются раньше, чем прогорели все угли.
  7. Курение кальяна может вызвать симптомы отравления.

Удельный вес воздуха и угарного газа почти одинаков, но последний немного легче, благодаря чему вначале скапливается у потолка. Этим его свойством пользуются при установке датчиков, сигнализирующих об опасности. Они находятся в самой верхней точке помещения.

Очень важно своевременно распознать отравление и принять меры по спасению себя и окружающих. Есть ряд симптомов, присущих интоксикации монооксидом углерода:

  • боль и тяжесть в голове;
  • учащённое сердцебиение;
  • увеличение давления;
  • в висках слышится стук;
  • своеобразный сухой кашель;
  • подкатывает тошнота;
  • начинается рвота;
  • болевые ощущения в области груди;
  • кожа и слизистые оболочки заметно краснеют;
  • возможны галлюцинации.
В качестве профилактических мер во избежание отравления угарным газом следует: регулярно проверять, чистить и своевременно осуществлять ремонт вентиляционных шахт, дымоходов и отопительных приборов

Обнаружение у себя или других подобных симптомов свидетельствует о начальной стадии отравления.

Средня тяжесть характеризуется сонливостью и сильным шумом в ушах, а также двигательным параличом, при этом пострадавший ещё не теряет сознания.

Симптомы тяжёлой интоксикации:

  • пострадавший теряет сознание и впадает в коматозное состояние;
  • недержание мочи и кала;
  • мышечные судороги;
  • постоянное нарушение дыхания;
  • синий цвет кожи и слизистых;
  • расширение зрачков и отсутствие реакции на свет.

Человек никак не может себе помочь и смерть застаёт его на месте происшествия.

Первая помощь и лечение

Вне зависимости от степени тяжести, поражение угарным газом требует немедленной медицинской помощи. Если есть возможность самостоятельно ходить, нужно немедленно покинуть зону поражения. На пострадавших, неспособных к передвижению, надевают противогазы и срочно эвакуируют из зоны поражения.

При отравлении угарным газом необходимо сразу же вызвать бригаду скорой помощи

Первая помощь состоит из таких действий:

  1. Необходимо освободить человека от стесняющей одежды.
  2. Согреть и дать подышать чистым кислородом.
  3. Облучить ультрафиолетовым излучением с помощью кварцевой лампы.
  4. Если необходимо, проводится искусственное дыхание и массаж сердца.
  5. Дать понюхать нашатырный спирт.
  6. Как можно быстрее доставить в ближайшую больницу.

В стационаре будет проведена терапия, направленная на вывод токсина из организма. Затем проводится полноценное обследование, чтобы выявить возможные осложнения. После этого проводится ряд восстановительных мероприятий.

Чтобы избежать неприятностей и трагедий, связанных с интоксикацией, рекомендуется соблюдать нехитрые профилактические меры:

Пострадавших вследствие отравления угарным газом необходимо вывести на свежий воздух или тщательно проветрить помещение
  1. Следить за чистотой внутреннего просвета дымоходов.
  2. Всегда проверять состояние воздушных заслонок в печах и каминах.
  3. Хорошо вентилировать помещения с отрытыми газовыми горелками.
  4. Соблюдать правила безопасности при работе с автомобилем в гараже.
  5. При контакте с оксидом углерода принимать антидот.

Воздух тяжелее угарного газа по молярной массе на единицу. Их удельный вес и плотность мало отличаются. Монооксид углерода является губительным для человеческого организма. Статистика отравлений показывает, что пик несчастных случаев приходится на зимний период.

kaminguru.com

Угарный газ: формула, вред, датчик

О том, насколько опасен угарный газ для человека, знают все, кому приходилось сталкиваться с работой отопительных систем, — печек, котлов, бойлеров, водогрейных колонок, рассчитанных на бытовое топливо в любой его форме. Нейтрализовать его в газовом состоянии довольно сложно, эффективных домашних способов бороться с угарным газом не существует, поэтому большая часть защитных мероприятий направлена на предупреждение и своевременное выявление угара в воздухе.

Свойства токсичного вещества

В природе и свойствах угарного газа нет ничего необычного. По сути, это продукт частичного окисления угля или угольсодержащих видов топлива. Формула угарного газа проста и незамысловата – СО, в химических терминах — монооксид углерода. Один атом углерода соединен с атомом кислорода. Так уж устроена природа процессов горения органического топлива, что угарный газ является неотъемлемой частью любого пламени.

Угли, родственные им виды топлива, торф, дрова при нагреве в топке газифицируются в угарный газ, и только потом дожигаются притоком воздуха. Если угар просочился из камеры горения в помещение, то он будет оставаться в стабильном состоянии до момента, когда вентиляцией угарный поток будет вынесен из комнаты или накапливаться, заполняя все пространство, от пола до потолка. В последнем случае спасти положение может только электронный датчик угарного газа, реагирующий на малейшее повышение концентрации токсичного угара в атмосфере помещения.

Что необходимо знать об угарном газе:

  • В стандартных условиях плотность угарного газа – 1,25 кг/м3, что очень близко к удельному весу воздуха 1,25 кг/м3. Горячий и даже теплый монооксид легко поднимается под потолок, по мере остывания оседает и перемешивается с воздухом;
  • Угарный газ не имеет вкуса, цвета и запаха, даже в условиях высокой концентрации;
  • Для начала образования угарного газа достаточно нагреть металл, контактирующий с углеродом, до температуры в 400-500оС;
  • Газ способен гореть в воздухе с выделением большого количества тепла, примерно 111 кДж/моль.

Опасно не только вдыхание угарного газа, газовоздушная смесь способна взрываться при достижении объемной концентрации от 12,5% до 74%. В этом смысле газовая смесь похожа на бытовой метан, но гораздо опаснее сетевого газа.

Метан легче воздуха и менее токсичен при вдыхании, кроме того, благодаря добавке в газовый поток специальной присадки – меркаптана, его наличие в помещении легко уловить по запаху. При небольшой загазованности кухни можно без последствий для здоровья войти в помещение и проветрить его.

С угарным газом все сложнее. Близкое родство СО и воздуха препятствует эффективному удалению токсичного газового облака. По мере охлаждения облако газа будет постепенно оседать в области пола. Если сработал датчик угарного газа, или обнаружилась утечка продуктов горения из печи или котла на твердом топливе, необходимо немедленно принимать меры к проветриванию, иначе первыми пострадают дети и домашние питомцы.

Подобное свойство угарного облака ранее широко использовалось для борьбы с грызунами и тараканами, но эффективность газовой атаки значительно ниже современных средств, а риск заработать отравление несоизмеримо выше.

К сведению! Газовое облако СО, при отсутствии вентиляции, способно сохранять свои свойства без изменений длительное время.

При наличии подозрения в накоплении угарного газа в подвальных помещения, подсобках, котельных, погребах первым делом необходимо обеспечить максимальное проветривание с кратностью газообмена 3-4 единицы в течение часа.

Условия появления угара в помещении

Монооксид углерода можно получить с помощью десятков вариантов химических реакций, но для этого необходимы специфические реактивы и условия их взаимодействия. Риск заработать отравление газом таким способом практически равен нулю. Основными причинами появления угарного газа в котельной или в помещении кухни остаются два фактора:

  • Плохая тяга и частичное перетекание продуктов горения из очага горения в помещение кухни;
  • Неправильная эксплуатация котельного, газового и печного оборудования;
  • Пожары и локальные очаги возгорания пластика, проводки, полимерных покрытий и материалов;
  • Отходящие газы из канализационных коммуникаций.

Источником угарного газа может стать вторичное горение золы, рыхлых отложений сажи в дымоходах, копоть и смола, въевшиеся в кирпичную кладку каминных полок и сажегасителей.

Чаще всего источником газового СО становятся тлеющие угли, догорающие в топке при закрытой задвижке. Особенно много выделяется газа при термическом разложении дров в отсутствии воздуха, примерно половину газового облака занимает угарный газ. Поэтому любые эксперименты с копчением мяса и рыбы на дымке, получаемом от тлеющей стружки, должны выполняться только на открытом воздухе.

Незначительное количество угарного газа может появляться и в процессе приготовления пищи. Например, все, кто сталкивался с установкой на кухне газовых отопительных котлов с закрытой топкой, знают, как реагируют датчики угарного газа на жареную картошку или любые продукты, приготовленные в кипящем масле.

Коварный характер угарного газа

Главная опасность монооксида углерода заключается в том, что невозможно ощутить и почувствовать его присутствие в атмосфере помещения до того момента, как газ попадет с воздухом в органы дыхания и растворится в крови.

Последствия от вдыхания СО зависят от концентрации газа в воздухе и длительности пребывания в помещении:

  • Головная боль, недомогание и развитие сонливого состояния начинается при объемном содержании газа в воздухе 0,009-0,011%. Физически здоровый человек способен выдержать до трех часов пребывания в загазованной атмосфере;
  • Тошнота, сильная боль в мышцах, судороги, обмороки, потеря ориентации могут развиться при концентрации 0,065-0,07%. Время пребывания в помещении до момента наступления неотвратимых последствий всего1,5-2 ч;
  • При концентрации угарного газа выше 0,5% даже несколько секунд пребывания в загазованном пространстве означают летальный исход.

Даже если человек благополучно самостоятельно выбрался из помещения с высокой концентрацией угарного газа, все равно потребуется медицинская помощь и использование антидотов, так как последствия отравления кровеносной системы и нарушения кровообращения мозга все равно проявятся, только чуть позже.

Молекулы угарного газа хорошо поглощаются водой и солевыми растворами. Поэтому в качестве первого подручного средства защиты нередко используются обычные полотенца, салфетки, смоченные любой доступной водой. Это позволяет остановить попадание угарного газа в организм на несколько минут, пока появится возможность покинуть помещение.

Нередко этим свойством монооксида углерода злоупотребляют некоторые владельцы отопительной аппаратуры, в которой встроены датчики СО. При срабатывании чувствительного сенсора, вместо проветривания помещения, зачастую прибор просто накрывают мокрым полотенцем. Как результат, после десятка подобных манипуляций датчик угарного газа выходит из строя, и на порядок возрастает риск заработать отравление.

Технические системы регистрации угарного газа

По сути, сегодня существует только один способ успешно бороться с угарным газом, использовать специальные электронные приборы и датчики, регистрирующие превышение концентрации СО в помещении. Можно, конечно, поступить проще, например, обустроить мощную вентиляцию, как это делают любители отдыха у настоящего кирпичного камина. Но в подобном решении есть определенный риск заработать отравление угарным газом при смене направления тяги в трубе, а кроме того, жить под сильным сквозняком тоже не очень полезно для здоровья.

Устройство датчиков наличия угарного газа

Проблема контроля над содержанием угарного газа в атмосфере жилых и подсобных помещений на сегодня настолько же злободневна, как и наличие пожарной или охранной сигнализации.

В специализированных салонах отопительного и газового оборудования можно приобрести несколько вариантов приборов контроля над содержанием газа:

  • Химические сигнализаторы;
  • Инфракрасные сканеры;
  • Твердотельные датчики.

Чувствительный сенсор прибора обычно комплектуется электронной платой, обеспечивающей питание, калибровку и преобразование сигнала в понятную форму индикации. Это могут быть просто зеленые и красные светодиоды на панели, звуковая сирена, цифровая информация для выдачи сигнала в компьютерную сеть или управляющий импульс для автоматического клапана, перекрывающего подачу бытового газа к отопительному котлу.

Понятно, что использование датчиков с управляемым запирающим клапаном является вынужденной мерой, но зачастую производители отопительного оборудования намеренно встраивают «защиту от дурака», чтобы избежать всевозможных манипуляций с безопасностью газового оборудования.

Химические и твердотельные приборы контроля

Наиболее дешевая и доступная версия датчика с химическим индикатором изготавливается в виде сетчатой колбы, легко проницаемой для воздуха. Внутри колбы находится два электрода, разделенных пористой перегородкой, пропитанной раствором щелочи. Появление угарного газа приводит к карбонизации электролита, проводимость сенсора резко падает, что немедленно считывается электроникой в качестве сигнала тревоги. После установки прибор находится в неактивном состоянии и не срабатывает до тех пор, пока в воздухе не появятся следы угарного газа, превышающие допустимую концентрацию.

В твердотельных датчиках вместо пропитанного щелочью куска асбеста используются двухслойные пакеты из диоксидов олова и рутения. Появление газа в воздухе вызывает пробой между контактами сенсорного устройства и автоматически запускает сигнал тревоги.

Сканеры и электронные сторожа

Инфракрасные датчики, работающие по принципу сканирования окружающего воздуха. Встроенный инфракрасный сенсор воспринимает свечение лазерного светодиода, и по изменению интенсивности поглощения газом теплового излучения срабатывает триггерное устройство.

СО очень хорошо поглощает тепловую часть спектра, поэтому подобные приборы работают в режиме сторожа или сканера. Результат сканирования может выдаваться в виде двухцветного сигнала или индикации величины содержания угарного газа в воздухе на цифровой или линейной шкале.

Какой датчик лучше

Для правильного подбора сенсора наличия угарного газа необходимо учитывать режим работы и характер помещения, в котором предстоит установить сенсорное устройство. Например, химические датчики, считающиеся устаревшими, прекрасно работают в условиях котельных и подсобных помещений. Недорогой прибор для обнаружения угарного газа можно установить на даче или в мастерской. На кухне сетка быстро покрывается пылью и жировыми отложениями, что резко снижает чувствительность химической колбочки.

Полупроводниковые сенсоры угарного газа работают одинаково хорошо в любых условиях, но для их функционирования требуется мощный внешний источник питания. Стоимость прибора выше, чем цена на химические сенсорные системы.

Инфракрасные датчики на сегодня наиболее распространены. Они активно используются для комплектации систем безопасности квартирных котлов индивидуального отопления. При этом чувствительность системы контроля практически не меняется с течением времени из-за пыли или температуры воздуха. Мало того, такие системы, как правило, имеют встроенные механизмы тестирования и калибровки, что позволяет периодически проверять их работоспособность.

Установка приборов контроля над содержанием угарного газа

Сенсоры, осуществляющие контроль над содержанием угарного газа, должны устанавливаться и обслуживаться исключительно профильными специалистами. Периодически приборы подлежат проверке, калибровке, обслуживанию и замене.

Датчик должен устанавливаться на удалении от источника газа от 1 до 4 м, корпус или выносные сенсоры крепятся на высоте 150 см над уровнем пола и обязательно калибруются по верхнему и нижнему порогу чувствительности.

Срок службы квартирных датчиков угарного газа составляет 5 лет.

Заключение

Борьба с образованием угарного газа требует аккуратности и ответственного отношения к установленной аппаратуре. Любые эксперименты с сенсорами, особенно полупроводникового типа, резко снижают чувствительность прибора, что в конечном итоге приводит к увеличению содержания угарного газа в атмосфере кухни и всей квартиры, медленному отравлению всех ее обитателей. Проблема контроля угарного газа настолько серьезна, что, возможно, использование сенсоров в будущем могут сделать обязательным для всех категорий индивидуального отопления.

bouw.ru

Плотность газов при нормальных условиях (Таблица)

Таблица содержит значения плотности газов при нормальных условиях (при 0°С и 760 мм. рт. ст.). Будет полезна для школьников и студентов при изучении химии и физики, а также для подготовки к экзаменам и ЕГЭ.

Смотрите также таблицу плотность металлов

Газы

Формула

Плотность при нормальных условиях ρ, кг/м3

Азот

N2

1,2505

Аммиак

Nh4

0,7714

Аргон

Ar

1,7839

Ацетилен

C2h3

1,1709

Ацетон

C3H6O

2,595

Бор фтористый

BF3

2,99

Бромистый водород

HBr

3,664

Н-бутан

C4h20

2,703

Изо-бутан

C4h20

2,668

Н-бутиловый спирт

C4h20O

3,244

Вода

h3O

0,768

Водород

h3

0,08987

Воздух (сухой)

1,2928

Н-гексан

C6h24

3,845

Гелий

He

0,1785

Н-гептан

C7h26

4,459

Германия тетрагидрид

Geh5

3,42

Двуокись углерода

CO2

1,9768

Н-декан

C10h32

6,35

Диметиламин

(Ch4)2NH

1,966*

Дифтордихлорметан

CF2Cl2

5,51

Дифенил

C12h20

6,89

Дифениловый эфир

C12h20O

7,54

Дихлорметан

Ch3Cl2 

3,79

Диэтиловый эфир

C4h20O 

3,30

Закись азота

N2O 

1,978

Йодистый водород

HI

5,789

Кислород

O2 

1,42895

Кремний фтористый

SiF4

4,9605

Кремний гексагидрид

Si2H5

2,85

Кремний тетрагидрид

Sih5

1,44

Криптон

Kr 

3,74

Ксенон

Xe 

5,89

Метан

Ch5 

0,7168

Метиламин

CH5N 

1,388

Метиловый спирт

Ch5O 

1,426

Мышьяк фтористый

AsF5

7,71

Неон

Ne 

0,8999

Нитрозилфторид

NOF

2,176*

Нитрозилхлорид

NOCl 

2,9919

Озон

O3

2,22

Окись азота

NO 

1,3402

Окись углерода

CO 

1,25

Н-октан

C8h28 

5,03

Н-пентан

C5h22   (Ch4(Ch3)3СН3)

3,457

Изо-пентан

C5h22   (СН3)2СНСН2СН3

3,22

Пропан

C3H8 

2,0037

Пропилен

C3H6 

1,915

Радон

Rn

9,73

Силан диметил

Sih3(Ch4)2

2,73

Силан метил

Sih4Ch4

2,08

Силан хлористый

Sih4Cl

3,03

Cилан трифтористый

SiHF3

3,89

Стибин (15°С, 754 мм.рт.ст.)

Sbh4

5,30

Селеновая кислота

h3Se

3,6643

Сернистый газ

SO2 

2,9263

Сернистый ангидрид

SO3 

3,575

Сероводород

h3S 

1,5392

Сероокись углерода

COS

2,72

Сульфурил фтористый

SO2F2

3,72*

Триметиламин

(Ch4)3N

2,58*

Триметилбор

(Ch4)3B

2,52

Фосфористый водород

Ph4 

1,53

Фосфор фтористый

PF3

3,907*

Фосфор оксифторид

POF3

4,8

Фосфор пентафторид

PF5

5,81

Фреон-11

CF3CI 

6,13

Фреон-12 (дифтордихлорметан)

CF2CI2 

5,51

Фреон-13

CFCI3 

5,11

Фтор

F2 

1,695

Фтористый кремний

SiF4 

4,6905

Фтористый метил

Ch4F 

1,545

Фторокись азота

NO2F

2,9

Хлор

Cl2 

3,22

Хлор двуокись

ClO2

3,09*

Хлор окись

Cl2O

3,89*

Хлористый водород

HCl 

1,6391

Хлористый метил (метилхлорид)

Ch4Cl 

2,307

Хлористый этил

C2H5Cl 

2,88 

Хлороформ

CHCl3 

5,283

Хлорокись азота

NO2Cl 

2,57

Циан, дициан

C2N2

2,765 (2,335*)

Цианистая кислота

HCN 

1,205

Этан

C2H6 

1,356

Этиламин

C2H7N 

2,0141

Этилен

C2h5

1,2605

Этиловый спирт

C2H6O 

2,043

_______________

Источник информации:

И.К.Кикоин. Таблицы физических величин./ - СПб.: 1976.

infotables.ru


Смотрите также