Расчет жб плиты


Расчет монолитной железобетонной плиты

28

Для сборного железобетонного перекрытия, представленного на плане и разрезе рис. 1, требуется рассчитать сборную ребристую плиту с ненапрягаемой арматурой в продольных ребрах. Сетка колонн llк = 5,7х6,2 м. Направление ригелей междуэтажных перекрытий поперёк здания. Нормативное значение временной нагрузки на междуэтажные перекрытия 8,0 кН/м2. Из них длительная составляющая равна 70%. Коэффициент надежности по ответственности здания γn=1,0, коэффициенты надежности по нагрузке: временной - γƒ = 1,2; постоянной – γƒ = 1,1. Бетон тяжелый класса В15.

Расчетные сопротивления бетона Rb = 8,5 МПа и Rbt = 0,75 МПа; коэффициент условий работы бетона γb1=1,0, так как присутствует нагрузка непродолжительного действия составляющая более 10 % (СП [4], п. 5.1.10). Принимаемые далее в расчётах по несущей способности (первая группа предельных состояний) величины расчетных сопротивлений равны:

Rb = 1,0 ∙ 8,5 = 8,5 МПа; Rbt = 1,0 ∙ 0,75 = 0,75 МПа.

Для расчета по второй группе предельных состояний (образования и ширины раскрытия трещин, прогиба) расчетные сопротивления бетона будут Rb,ser=11 МПа, Rbt,ser= 1,1 МПа; модуль упругости бетона Eb = 24000 МПа (табл. 5.4. [4]).

Основные размеры плиты (рис. 2):

– длина плиты ln = lk – 450 мм = 6200 – 450 = 5750 мм;

– номинальная ширина В = l:4 = 5700:4 = 1425 мм;

– конструктивная ширина В1 = В – 15 мм = 1425 – 15= 1410 мм.

Высота плиты ориентировочно определяется по выражению:

,

Принимаем h = 400 мм.

Рис. 1 - Конструктивная схема многоэтажного каркасного здания.

а – план перекрытия; б – разрез здания 1-1

Рис. 2 – К расчёту ребристой плиты.

а– геометрические размеры; б – расчётная схема продольного ребра.

(первая группа предельных состояний)

Расчет полки плиты.

Толщина полки принята h′ƒ = 50 мм. Пролёты полки в свету по рис. 2:

меньший размер

l1 = В1 – 240 мм = 1410 – 240 = 1170 мм;

больший размер:

Расчётная нагрузка на 1 м2 полки:

Постоянная с коэффициентом надежности по нагрузке γƒ = 1,1:

- вес полки: γƒ ∙ h′ƒ ∙ ρ = 1,1 ∙ 0,05 ∙ 25 = 1,375 кН/м2, где ρ=25 кН/м3- вес 1 м3 тяжелого железобетона;

- вес пола и перегородок 1,1 ∙ 2,5 = 2,75 кН/м2 (при отсутствии сведений о конструкции пола и перегородок, их нормативный вес принят 2,5 кН/м2).

Итого постоянная нагрузка: g0 = 1,375+2,75 = 4,125 кН/м2.

Временная нагрузка (с γƒ = 1,2): p0 = 1,2 ∙ 8,0 = 9,6 кН/м2.

Полная расчётная нагрузка (с γn = 1,0):

q = γn (g0+ p0)=1,0 (4,125+9,6) = 13,725 кН/м2.

Схема армирования плиты и эпюра моментов в полке плиты представлена на рис. 3.

Изгибающий момент в полке (в пролете и на опорах) при прямоугольных полях (l1 l2):

Площадь арматуры при h0 = h – a = 50 – 19 = 26мм (a = защитный слой 15 мм + расстояние до середины толщины сетки при арматуре Ø4 В500).

Расчетное сопротивление арматуры B500 Rs = 415 МПа.

Проверка условия αm < αR:

,

Граничная относительная высота сжатой зоны:

αR = ξR(1-0,5 ξR) = 0,502(1-0,5∙0,502) = 0,376.

Таким образом, условие αm = 0,055 < αR = 0,376 выполняется.

Рис.3 – Схема армирования плиты и эпюра М в полке плиты

Принята сетка: (+10,69%)

Процент армирования полки:

Расчёт поперечных рёбер.

Расчёт прочности нормальных сечений. Высота ребра hр = 200мм, арматура А400, расчётный пролёт lр = l1 = 1170 мм.

Расчётная нагрузка от собственного веса 1 пм ребра:

Временная расчётная нагрузка на ширине ребра bB=0,1м

Расчётная схема ребра, эпюра нагрузки и моментов представлена на рис. 4.

Таким образом, изгибающий момент в пролёте поперечного ребра будет равен:

Сечение тавровое, расчётная ширина полки:

h0 = h – a = 200 – 25 = 175мм (20 + 10/2 = 25мм)

Рис. 4 – К расчёту поперечного ребра.

а - расчётное сечение; б - расчётная схема и эпюра М

Расчёт арматуры:

Принят 1Ø8 А400 с Аs = 50,3мм2 (+ 33,86%).

Продольные рёбра.

Рассчитываются в составе всей плиты, рассматриваемой как балка П-образного сечения с высотой h = 400 мм и номинальной шириной В=1425 мм (конструктивная ширина В1=1410 м). Толщина сжатой полки h′ƒ = 50 мм.

Расчётный пролет при определении изгибающего момента принимается равным расстоянию между центрами опор на ригелях:

lр=lп – 100мм = 5750 – 100 = 5650 мм;

расчетный пролет при определении поперечной силы (рис.2а):

l0 = lп – 200 = 5750 – 200=5550 мм.

Нагрузка на 1 пог. м плиты (или на 1 пог. м двух продольных ребер) составит:

- постоянная

где- расчётная нагрузка от собственного веса трёх поперечных рёбер

,

- расчётная нагрузка от собственного веса двух продольных рёбер с заливкой швов

где: =220 мм - средняя ширина двух рёбер и шва; = 25 кН/м3- вес 1 м3 тяжелого железобетона.

  • временная p = γn ∙p0 ∙B = 1,0 · 9,6 · 1,425= 13,68 кН/м;

  • полная q = g + p = 9,09 + 13,68 = 22,77 кН/м;

Усилия от расчетной нагрузки для расчёта на прочность

Расчет прочности нормальных сечений

Продольная рабочая арматура в рёбрах принята в соответствии с заданием класса А300, расчётное сопротивление Rs=270 МПа. Сечение тавровое с полкой в сжатой зоне представлено на рис. 5; расчетная ширина полки b´f = B = 1425 мм (с учётом швов); =50мм,h0 = h – a = 400 – 50 = 350 мм (а=50 мм при двухрядной арматуре).

Рис. 5 – Расчётное сечение продольного ребра по прочности

Полагая, что нейтральная ось лежит в полке, αm и ξ будут равны:

Проверка условия:

x = ∙h0 = 0,063 350 = 22,05 мм < hf=50 мм;

.

Площадь сечения продольной арматуры:

Принимаем продольную арматуру 418 А300 с Аs = 1018 мм2 (+ 2,83%) по два стержня в каждом ребре.

Расчёт нормальных сечений к продольной оси элемента по деформационной модели

Расчет по прочности производят из условий:

,

.

Деформации в продольной арматуре в предельном состоянии при двузначной эпюре деформаций согласно гипотезе плоских сечений равны:

откуда, ,

где: х1 – фактическая высота сжатой зоны бетона:

где: х – высота сжатой зоны при прямоугольной эпюре напряжений, полученная при расчёте по предельным усилиям. Используя расчёты, выполненные выше (х1=22,05 мм, h0=350 мм), и задавшись, предельные деформации в бетоне:

- деформации в бетоне не превышают предельных.

Расчет прочности наклонных сечений на поперечную силу

Поперечная сила на грани опоры Qmax = 63,19 кН. В каждом продольном ребре устанавливается по одному каркасу с односторонним расположением двух рабочих стержней диаметром d = 18 мм (рис.3,5). Диаметр поперечных стержней из условия требований свариваемости должен быть не менее 0,25 диаметра продольной арматуры. В данном случае принимаем поперечные стержни диаметром dsw= 6 мм > 0,25∙18 = 4,5мм из проволоки класса А240,

Asw1=28,3 мм2; расчетное сопротивление Rsw = 170 МПа. При Asw1=28,3 мм2 и n = 2 (на оба ребра) имеем: Asw = n∙ Asw1=228,3 = 56,6 мм2.

Бетон тяжелый класса В15 (Rb = 8,5 МПа; Rbt = 0,75 МПа; коэффициент условий работы бетона γb1=1,0 т.к. кратковременная нагрузка составляет более 10% от всей временной нагрузки).

Предварительно принятый шаг хомутов:

Sw1 = 175 мм (Sw1 ≤ 0,5h0 = 0,5 ∙ 350 = 175мм; Sw1≤300мм)

Sw2= 250мм (Sw2 ≤ 0,75h0 = 0,75 ∙ 350 = 262,5мм; Sw2≤500мм)

Прочность бетонной сжатой полосы из условия (8) [10]:

, то есть прочность полосы обеспечена.

Интенсивность хомутов определяется по формуле (13) [10]:

Поскольку qsw1 = 54,98 Н/мм > 0,25Rвt·b = 0,250,75185 =34,69Н/мм - хомуты полностью учитываются в расчете и значение Мb определяется по формуле (11) [10]:

Н∙мм.

Самая невыгодная длина проекции наклонного сечения C определяется из выражений:

Поскольку , значение С определяется по формуле (16) [11]:

Принято С = 3h0 = 1050мм.

Длина проекции наклонной трещины С0 принимается не более С и не более 2h0. В данном случае С0 = 2h0 = 2  350 = 700 мм. Тогда

кН,

.

Проверяем условие (8) [10]:

т.е. прочность наклонных сечений обеспечена.

Проверка требования:

т.е. требование выполнено.

Определение длины приопорного участка

А. Аналитический метод.

При равномерно распределённой нагрузке длина приопорного участка определяется в зависимости от:

Поскольку

значение Н∙мм

Так как , длина приопорного участка определится по формуле:

где

принимаем с=1050мм.

Qb,min = 0,5Rbt∙b∙h0 = 0,5∙0,75∙185∙350 = 24281,25Н = 24,28 кН.

Б. Графический метод.

Рис. 6 - К определению l1 графическим методом

Длина приопорного участка l1 принимается бόльшая из двух значений, то есть по рис. 6 l1 = 1,709м.

studfiles.net

Расчет железобетонной плиты перекрытия

Монолитные изделия могут быть сделаны без применения подъемных кранов. Но, несмотря на массу преимуществ монолитных плит, немало людей попросту отказывается от их устройства. Причиной тому является невозможность проведения надлежащего расчета плиты на стадии планировочных работ. Именно этот фактор послужил толчком к созданию данной статьи. В ней описан весь процесс расчета монолитного ж/б перекрытия.

Этап 1. Определение расчетной длины плиты

Длина плиты и проектная длина плиты это очень разносторонние вещи. Фактическая длина плиты может быть любой. А вот расчетная длина (другими словами пролет балки, а в нашем случае плиты перекрытия) имеет совсем иные значения. Пролетом зовется расстояние в свету (минимальное расстояние между наиболее выпуклыми частями соседних элементов) между несущими стенами. А если быть точнее, то это рассчитываемая от стен длина и ширина помещения. И само собой, за счет опирания на стены, по факту плита будет длиннее.

Следует отметить, что монолитная железобетонная плита может опираться на несущие стены, возведенные из следующих материалов: кирпич, камень, газо- и пенобетон, керамзитобетон, шлакоблок. Если в качестве опор под плиту используется кладка из недостаточно прочных материалов (газобетон, пенобетон, керамзитобетон, шлакоблок), то этот материал должен пройти расчеты на соответствующие нагрузки.

В статье приведен пример однопролетной плиты перекрытия, которая опирается на две несущих стены. Расчет плиты при условии ее опирания на четыре несущих стены — рассмотрен не будет.

Примем значение расчетной длины плиты l=4 м.

Этап 2. Определение размеров плиты, класса арматуры и бетона

Без наличия этих параметров (а они нам неизвестны по определению) нами не будет выполнен расчет. Исходя из этого, неизвестные значения нами будут заданы самостоятельно.

Зададим параметры плиты: высота h=10 см; ширина b=100 см. Данная условность поможет определить значение 1 расчетного метра. Опираясь на это, при изготовлении плиты (к примеру) длиной 4 и шириной 6 метров, для каждого из 6 метров предстоит принять параметры, определенные для одного расчетного метра.

Итак, нами были приняты значения высоты h=10см, ширины b=100 см, а также класс бетона B20 и арматуры А400.

Этап 3: Определение опор

В зависимости от типа и тяжести стен, а также от ширины опирания на них плиты перекрытия, несущий элемент может быть рассмотрен как шарнирно опертая бесконсольная балка или же, как балка с жестким защемлением на опорах. В данной статье будет рассмотрен наиболее распространенный случай — шарнирно опертая безконсольная балка.

Этап 4: Определение предполагаемой нагрузки на плиту

Балка может испытывать самые разнообразные нагрузки. Строительная механика «гласит», что все неподвижное, прибитое, приклеенное или другим способом устроенное на плите перекрытия становится статистической и в тоже время постоянной нагрузкой. А все что движется (что передвигается разными способами) по балке становится динамической (как правило временной) нагрузкой. Все это к тому, что в данном примере нами будут убраны различия между этими видами нагрузок.

Сосредоточенная нагрузка измеряется в килограмм-силах (кгс или кг) либо в Ньютонах. Распределительная нагрузка измеряется в килограмм-сила-метр (кгс/м).

Расчет плиты перекрытия в жилых домах, как правило, нацелен на определение распределительной нагрузки q1=400 кг/м². Вес плиты высотой 100 мм добавит к этому типу нагрузи около 250 кг/м². А стяжка и чистовое покрытие (возьмем керамическую плитку) приплюсуют сюда еще дополнительных 100 кг/м².

В приведенной выше распределительной нагрузке учитывается большая часть из тех нагрузок, которые имеют отношение к перекрытиям в жилых домах. Однако это ни в коей мере не означает, что расчет конструкции с учетом более значимых нагрузок не может иметь место. Отнюдь, просто в нашем случае взятые значения являются усредненными. В тоже время мы в любом случае подстрахуемся и умножим итоговое значение нагрузки на так называемый коэффициент надежности γ=1.2.

q=(400+250+100)1.2=900 кг/м²

Поскольку наши расчеты опираются на плиту шириной 1 м, то нагрузка являющаяся распределительной, может быть рассмотрена как плоская (работающая на плиту перекрытия по оси «y» и измеряемая в кг/м).

Этап 5: Определение максимального изгибающего момента балки

Максимальный изгибающий момент плиты опирающейся на две стены находится по ее центру:

Для пролета l=4 м Мmax=(900х4²)/8=1800 кг·м

Этап 6: Расчетные допущения

Согласно СНиП 52-01-2003 и СП 52-101-2003 в основе расчета ж/б элементов лежит следующая информация:

  • Сопротивление бетона растяжению принимается нулевым значением. Причиной такого допущения является разница в сопротивлении растяжения между бетоном и арматурой. Значение сопротивления арматуры к таким нагрузкам превосходит бетон приблизительно в 100 раз. В итоге получается, что на растяжении работает только арматура.
  • Сопротивление бетона сжатию принимается значением определенным равномерным распределением по существующей зоне сжатия. В итоге данное сопротивление бетона не должно приниматься более чем расчетное сопротивление Rb.
  • Значение максимального растяжения в арматуре не должно превышать значение расчетного сопротивления Rs..

Чтобы устранить возможность образования эффекта пластического шарнира (где значение изгибающего момента отдалена от нуля, вследствие чего происходит обрушение конструкции) соотношение ξ сжатой зоны бетона «y» расстоянию от центра тяжести арматуры до верха балки h0, ξ=у/ho (6.1) не должно превышать предельное значение ξR.

Для определения предельного значения используется следующая формула:

Формула (6.2) является эмпирической (опирающейся на непосредственное наблюдение) и выведена при проектировании железобетонных конструкций. Значение Rs — это сопротивление арматуры измеряемое в мПа (миллипаскалях). В тоже время, данный этап работ допускает использование таблицы 1.

Значение aR обозначает расстояние от центральной точки поперечного сечения арматуры до нижнего уровня балки. С увеличением этого расстояния (его минимальное значение не должно быть не меньше диаметра самой арматуры и не меньше 10 мм) усиливается сцепление арматуры с бетоном. Однако вместе с этим уменьшается полезное значение h0.

Таблица 1. Граничные значения относительной высоты сжатой зоны бетона:

Класс арматуры A240 A300 A400 A500 B500
Значение ξR 0,612 0,577 0,531 0,493 0,502
Значение aR 0,425 0,411 0,390 0,372 0,376

Если расчеты проводятся недостаточно квалифицированными проектировщиками (грубо говоря — не профессионалами) с целью предостережения, рекомендуется занижать значение сжатой зоны ξR в 1.5 раза.

В нашем случае, а=200 мм.

Если ξ ≤ ξR или же в сжатой зоне отсутствует арматура, для проверки прочности бетона используется следующая формула:

Смысл данной формулы следующий: поскольку любой момент может быть представлен в виде силы работающей с плечом, то в отношении бетона должно быть применено вышеприведенное условие.

При том же ξ ≤ ξR для проверки прочности прямоугольных сечений с одиночной арматурой используется следующая формула:

Смысл данной формулы следующий: согласно расчету, арматура должна выдерживать нагрузку равную той, что выдерживает бетон. Поскольку как первый, так и последний испытывает действие одинаковой силы с аналогичным плечом.

Данная расчетная схема не является единственной, расчет может быть произведен относительно центра тяжести приведенного сечения. Но стоит заметить, что железобетон является композитным (искусственно созданным сплошным материалом с неоднородным составом) материалом, за счет чего его расчет по предельным напряжениям (при сжимании или растяжении) возникающим в поперечном сечении ж/б балки достаточно непростая задача. В тоже время железобетон в этом не одинок. Разброс прочностных характеристик встречается у таких конструкционных материалов как сталь, алюминий и т.п. Сюда же можно отнести древесину, кирпич, а также полимерные композитные материалы.

Для определения высоты сжатой зоны бетона при отсутствии в ней арматуры используется следующая формула:

Для возможности определения сечения арматуры нужно определить коэффициент am:

Если аm < aR тогда необходимость наличия арматуры в сжатой зоне полностью отпадает. В свою очередь для определения аR используется таблица 1.

В случае отсутствия арматуры в сжатой зоне, для определения сечения арматуры используется следующая формула:

Пример расчета монолитной железобетонной плиты перекрытия

Обратите внимание, расчет будет проводиться на примере железобетонной бесконсольной плиты, которая находится на опорах шарнирного типа и подвергается равномерно распределительной нагрузке.

Этап 7: Подбор сечения арматуры

Согласно СНиП 2.03.01-84 «Бетонные и железобетонные конструкции» расчетное сопротивление растягивающим усилиям в отношении арматуры класса А400 составляет Rs=3600 кгс/см² (355 МПа). Согласно тому же СНиПу, расчетное сопротивление сжимающим нагрузкам для бетона класса B20 имеет значение Rb=117кгс/см² (11.5 МПа). Другие необходимые для расчета параметры и нагрузки в отношении плиты, нами были определены ранее.

Используя формулу (6.6) определим значение коэффициента аm: аm=1800/(1·0.08²·1170000)=0.24038

Примечание: с целью соблюдения размерности, значение расчетного сопротивление было приведено в кг/м².

Согласно таблице 1 полученное в результате расчетов значение является ниже предельного (0.24038 < 0.39), из этого исходит, что такие обстоятельства не требуют наличия арматуры в сжатой зоне. Получается, что по формуле (6.8) необходимая площадь сечения арматуры: As=117·100·8(1-√‾(1-2·0.24038))/3600=7.265 см².

Примечание: с целью упрощения вычисления, значения поперечного сечения были представлены в сантиметрах, а величины расчетных сопротивлений в кг/см².

Получается, что для армирования одного погонного метра понадобится 5 стержней Ø14 мм и с ячейкой 200 мм. Совместно с этим площадь сечения арматуры будет равняться 7.69 см². Тут же стоит отметить, что для повышения продуктивности подбора арматуры можно использовать таблицу 2:

Диаметр, мм Площадь поперечного сечения, см², при числе стержней
1 2 3 4 5 6 7 8 9 Масса 1 пог. м, кг
Проволочная и стержневая арматура
3 0.071 0,14 0,21 0,28 0,35 0,42 0,49 0,57 0,64 0,052
4 0,126 0,25 0,38 0,5 0,63 0,76 0,88 1,01 1,13 0,092
5 0,196 0,39 0,59 0,79 0,98 1,18 1,37 1,57 1,77 0,144
6 0,283 0,57 0,85 1,13 1,42 1,7 1,98 2,26 2,55 0,222
7 0,385 0,77 1,15 1,54 1,92 2,31 2,69 3,08 3,46 0,302
8 0,503 1,01 1,51 2,01 2,51 3,02 3,52 4,02 4,53 0,395
9 0,636 1,27 1,91 2,54 3,18 3,82 4,45 5,09 5,72 0,499
10 0,785 1,57 2,36 3,14 3,93 4,74 5,5 9,28 7,07 0,617
12 1,313 2,26 3,39 4,52 5,65 6,79 7,92 9,05 10,18 0,888
14 1,539 3,08 4,62 6,16 7,69 9,23 10,77 12,31 13,85 1,208
16 2,011 4,02 6,03 8,04 10,05 12,06 14,07 16,08 18,1 1,578
18 2,545 5,09 7,63 10,18 12,72 15,27 17,81 20,36 22,90 1,998
20 3,142 6,28 9,41 12,56 15,71 18,85 21,99 25,14 28,28 2,466
22 3,801 7,6 11,4 15,2 19,0 22,81 26,61 30,41 34,21 2,984
25 4,909 9,82 14,73 19,63 24,54 29,45 34,36 39,27 44,13 3,853
28 6,158 12,32 18,47 24,63 30,79 36,95 43,1 49,26 55,42 4,834
32 8,042 16,08 24,13 32,17 40,21 48,25 56,3 64,34 72,38 6,313
36 10,18 20,36 30,54 40,72 50,9 61,08 71,26 81,44 91,62 7,99
40 12,56 25,12 37,68 50,24 62,8 75,36 87,92 100,48 113,04 9,87
45 15,904 31,81 47,71 63,62 79,52 95,42 111,33 127,23 143,13 12,49
50 19,635 39,27 58,91 78,54 98,18 117,81 137,45 157,08 176,72 15,41
55 23,76 47,52 71,28 95,04 118,8 142,56 166,32 190,08 213,84 18,65
60 28,27 56,54 84,81 113,08 141,35 169,62 197,89 226,16 254,43 22,19
70 38,48 76,96 115,44 153,92 192,4 230,88 269,36 307,84 346,32 30,32
80 50,27 100,55 150,81 201,08 251,35 301,62 351,9 402,15 452,43 39,46
Семипроволочные канаты класса К-7
4,5 0,127 0,25 0,38 0,51 0,64 0,76 0,89 1,01 1,14 0,102
6 0,226 0,45 0,68 0,9 1,13 1,36 1,58 1,81 2,03 0,181
7,5 0,354 0,71 1,06 1,41 1,77 2,12 2,48 2,83 3,18 0,283
9 0,509 1,02 1,53 2,04 2,54 3,05 3,56 4,07 4,58 0,407
12 0,908 1,82 2,72 3,63 4,54 5,45 6,35 7,26 8,17 0,724
15 1,415 2,83 4,24 5,66 7,07 8,49 9,9 11,32 12,73 1,132

В армировании также могут быть использованы 7 стержней Ø12 мм с ячейкой 140 мм или же 10 стержней большего диаметра Ø10 мм с ячейкой 100 мм.

Используя формулу (6.5) даем оценку прочности бетона: у=3600·7.69 / (117·100) = 2.366 см

ξ=2.366/8=0.29575 — полученное значение ниже граничного 0.531 и согласно формуле (6.1), а также таблице 1, ниже рекомендуемого 0.531/1.5=0.354 что удовлетворяет необходимые требования.

  • 117·100·2.366(8 — 0.5·2.366)=188709 кгс·м > М=180000 кгс·м, по формуле (6.3);
  • 3600·7.69(8 — 0.5·2.366)=188721 кгс·м > М=180000 кгс·м, по формуле (6.4).

Выходит, что все соответствует нужным требованиям.

При увеличении класса бетона до В25, снижается количество требуемой арматуры, поскольку для В25 Rb=148 кгс/см² (14.5 МПа).

  • am=1800/(1·0.08²·1480000)=0.19003;
  • As=148·100·10(1-√‾(1-2·0.19))/3600=6.99 см².

Из этого исходит, что для армирования 1 погонного метра плиты перекрытия понадобится всего 5 стержней диаметром 14 мм с шагом 200 мм (допускается продолджение подбора сечения). Также стоит заметить, что с целью удовлетворения требованиям по максимально допустимому прогибу, высота плиты завышается до 130-140 мм, при этом сечение арматуры составляет 4-5 стержней Ø16 мм.

domaster.ucoz.org

Расчет монолитной плиты перекрытия пример

Частные строители в процессе возведения своего дома часто сталкиваются с вопросом: когда необходимо произвести расчет монолитной железобетонной плиты перекрытия, лежащей на 4 несущих стенах, а значит, опертой по контуру? Так, при расчете монолитной плиты, имеющей квадратную форму, можно взять в расчет следующие данные. Кирпичные стены, возведенные из полнотелого кирпича, будут иметь толщину 510 мм. Такие стены образуют замкнутое пространство, размеры которого равны 5х5 м, на основания стен будет опираться железобетонное изделие, а вот опорные площадки по ширине будут равны 250 мм. Так, размер монолитного перекрытия будет равен 5.5х5.5 м. Расчетные пролеты l1 = l2 = 5 м.

Схема армирования монолитного перекрытия.

Кроме собственного веса, который прямо зависит от высоты плиты монолитного типа, изделие должно выдерживать еще некоторую расчетную нагрузку.

Схема монолитного перекрытия по профнастилу.

Отлично, когда данная нагрузка уже известна заранее. Например, по плите, высота которой равна 15 сантиметрам, будет производиться выравнивающая стяжка на основе цемента, толщина стяжки при этом равна 5 сантиметрам, на поверхность стяжки будет укладываться ламинат, его толщина равна 8 миллиметрам, а финишное напольное покрытие будет удерживать мебель, расставленную вдоль стен. Общий вес мебели при этом равен 2000 килограммов вместе со всем содержимым. Предполагается также, что помещение иногда будет умещать стол, вес которого равен 200 кг (вместе с закуской и выпивкой). Стол будет умещать 10 человек, общий вес которых равен 1200 кг, включая стулья. Но такое предусмотреть чрезвычайно сложно, поэтому в процессе расчетов используют статистические данные и теорию вероятности. Как правило, расчет плиты монолитного типа жилого дома производят на распределенную нагрузку по формуле qв = 400 кг/кв.м. Данная нагрузка предполагает стяжку, мебель, напольное покрытие, людей и прочее.

Эта нагрузка условно может считаться временной, т. к. после строительства могут осуществляться перепланировки, ремонты и прочее, при этом одна из частей нагрузки считается длительной, другая — кратковременной. По той причине, что соотношения кратковременной и длительной нагрузок неизвестны, для упрощения процесса расчетов можно считать всю нагрузку временной.

Определение параметров плиты

Схема сборной плиты перекрытия.

По причине, что высота монолитной плиты остается неизвестной, ее можно принять за h, этот показатель будет равен 15 см, в этом случае нагрузка от своего веса плиты перекрытия будет приблизительно равна 375 кг/кв.м = qп = 0.15х2500. Приблизителен этот показатель по той причине, что точный вес 1 квадратного метра плиты будет зависеть не только от диаметра и количества примененной арматуры, но и от породы и размеров мелкого и крупного наполнителей, которые входят в состав бетона. Будут иметь значение и качество уплотнения, а также другие факторы. Уровень данной нагрузки будет постоянным, изменить его смогут лишь антигравитационные технологии, но таковых на сегодняшний день нет. Таким образом можно определить суммарную распределенную нагрузку, оказываемую на плиту. Расчет: q = qп + qв = 375 +400 = 775 кг/м2.

Схема монолитной плиты перекрытия.

В процессе расчета следует взять во внимание, что для плиты перекрытия будет использован бетон, который относится к классу В20. Этот материал обладает расчетным сопротивлением сжатию Rb = 11.5 МПа или 117 кгс/см2. Будет применена и арматура, относящаяся к классу AIII. Ее расчетное сопротивление растяжению равно Rs = 355 МПа или 3600 кгс/см2.

При определении максимального уровня изгибающего момента следует учесть, что в том случае, если бы изделие в данном примере опиралось лишь на пару стен, то его можно было бы рассмотреть в качестве балки на 2-х шарнирных опорах (ширина опорных площадок на данный момент не учитывается), при всем при этом ширина балки принимается как b = 1 м, что необходимо для удобства производимых расчетов.

Расчет максимального изгибающего момента

Схема расчета монолитного перекрытия.

В вышеописанном случае изделие опирается на все стены, а это означает, что рассматривать лишь поперечное сечение балки по отношению к оси х будет недостаточно, так как можно рассматривать плиту, которую отражает пример, так же как балку по отношению к оси z. Таким образом, растягивающие и сжимающие напряжения окажутся не в единой плоскости, нормальной к х, а сразу в 2-х плоскостях. Если производить расчет балки с шарнирными опорами с пролетом l1 по отношению к оси х, тогда получится, что на балку будет действовать изгибающий момент m1 = q1l12/8. При всем при этом на балку с пролетом l2 будет действовать такой же момент m2, т. к. пролеты, которые отображает пример, равны. Однако расчетная нагрузка одна: q = q1 + q2, а если плита перекрытия имеет квадратную форму, то можно допустить, что: q1 = q2 = 0.5q, тогда m1 = m2 = q1l12/8 = ql12/16 = ql22/16. Это значит, что арматура, которая укладывается параллельно оси х, и арматура, укладываемая параллельно z, может быть рассчитана на идентичный изгибающий момент, при этом момент окажется в 2 раза меньше, чем для той плиты, которая опирается только на 2 стены.

Схема кровли профнастилом.

Так, уровень максимального расчета изгибающего момента окажется равен: Ма = 775 х 52/16 = 1219.94 кгс.м. Но такое значение может быть использовано лишь при расчете арматуры. По той причине что на поверхность бетона станет действовать сжимающие напряжения в двух взаимно перпендикулярных плоскостях, то значение изгибающего момента, применимое для бетона, следующее: Мб = (m12 + m22)0.5 = Mа√2 = 1219.94.1.4142 = 1725.25 кгс.м. Так как в процессе расчета, который предполагает данный пример, необходимо какое-то одно значение момента, можно взять во внимание среднее расчетное значение между моментом для бетона и арматуры: М = (Ма + Мб)/2 = 1.207Ма = 1472.6 кгс.м. Следует брать во внимание, что при отрицании такого предположения можно рассчитать арматуру по моменту, который действует на бетон.

Читайте также:  Расчет количества блоков на фундамент

Сечение арматуры

Схема перекрытия по профлисту.

Данный пример расчета монолитной плиты предполагает определение сечения арматуры в продольном и в поперечном направлениях. В момент использования какой бы то ни было методики следует помнить о высоте расположения арматуры, которая может быть разной. Так, для арматуры, которая располагается параллельно оси х, предварительно можно принять h01 = 13 см, а вот арматура, располагаемая параллельно оси z, предполагает принятие h02 = 11 см. Такой вариант верен, так как диаметр арматуры пока неизвестен. Расчет по старой методике проиллюстрирован в ИЗОБРАЖЕНИИ 2. А вот используя вспомогательную таблицу, которую вы увидите на ИЗОБРАЖЕНИИ 3, можно найти в процессе расчета: η1 = 0.961 и ξ1 = 0.077. η2 = 0.945 и ξ2 = 0.11.

Схема примера несъемной опалубки.

В таблице указаны данные, необходимые в ходе расчета изгибаемого элемента прямоугольного сечения. Элементы при этом армированы одиночной арматурой. А как производится расчет требуемой площади сечения арматуры, можно увидеть на ИЗОБРАЖЕНИИ 4. Если для унификации принять продольную, а также поперечную арматуру, диаметр которой будет равен 10 мм, пересчитав показатель сечения поперечной арматуры, приняв во внимание h02 = 12 см, мы получим то, что вы сможете увидеть, взглянув на ИЗОБРАЖЕНИЕ 5. Таким образом, для армирования одного погонного метра можно применить 5 стержней поперечной арматуры и столько же продольной. В конечном итоге получится сетка, которая имеет ячейки 200х200 мм. Арматура для одного погонного метра будет иметь площадь сечения, равную 3.93х2 = 7.86 см2. Это один пример подбора сечения арматуры, а вот расчет удобно будет производить, используя ИЗОБРАЖЕНИЕ 6.

Все изделие предполагает использование 50 стержней, длина которых может варьироваться в пределах от 5.2 до 5.4 метра. Учитывая то, что в верхней части сечение арматуры имеет хороший запас, можно уменьшить число стержней до 4, которые расположены в нижнем слое, площадь сечения арматуры в этом случае окажется равна 3.14 см2 либо 15.7 см2 по длине плиты.

Основные параметры

Схема расчета бетона на фундамент.

Вышеприведенный расчет был простым, но, чтобы уменьшить количество арматуры, его следует усложнить, т. к максимальный изгибающий момент будет действовать лишь в центральной части плиты. Момент в местах приближения к опорам-стенам стремится к нулю, следовательно, остальные метры, исключая центральные, можно армировать, используя арматуру, которая имеет меньший диаметр. А вот размер ячеек для арматуры, которая имеет диаметр, равный 10 мм, увеличивать не следует, так как распределенная нагрузка на плиту перекрытия считается условной.

Следует помнить, что существующие способы расчета монолитной плиты перекрытия, которая опирается по контуру, в условиях панельных построек предполагают применение дополнительного коэффициента, который будет учитывать пространственную работу изделия, ведь воздействие нагрузки заставит плиту прогибаться, что предполагает концентрированное применение арматуры в центральной части плиты. Использование подобного коэффициента позволяет максимум на 10 процентов уменьшить сечение арматуры. Но для железобетонных плит, которые изготавливаются не в стенах завода, а в условиях стройплощадки, применение дополнительного коэффициента не обязательно. Прежде всего это обусловлено необходимостью дополнительных расчетов на раскрытие возможных трещин, на прогиб, на уровень минимального армирования. Более того, чем большее количество арматуры имеет плита, тем меньше окажется прогиб в центре и тем проще его можно устранить либо замаскировать в процессе финишной отделки.

Так, если использовать рекомендации, которые предполагают расчет сборной сплошной плиты перекрытия общественных и жилых зданий, тогда площадь сечения арматуры, которая принадлежит к нижнему слою, по длине плиты окажется равна примерно А01 = 9.5 см2 , что примерно в 1.6 раза меньше полученного в данном расчете результата, но в этом случае необходимо помнить, что максимальная концентрация арматуры должна оказаться посредине пролета, поэтому разделить полученную цифру на 5 м длины не допустимо. Однако это значение площади сечения позволяет приблизительно оценить, какое количество арматуры можно сэкономить после проведения расчетов.

Расчет прямоугольной плиты

Схема монолитного перекрытия своими руками.

Данный пример для упрощения расчетов предполагает использование всех параметров, кроме ширины и длины помещения, таких же как в первом примере. Бесспорно, моменты, которые действуют относительно оси х и z в прямоугольных плитах перекрытия, не равны. И чем больше окажется разница между шириной и длиной помещения, тем больше плита перекрытия станет напоминать балку, размещенную на шарнирных опорах, а в момент достижения определенного значения уровень влияния поперечной арматуры будет почти неизменным.

Читайте также:  Расчет расхода цемента на куб раствора

Существующие экспериментальные данные и опыт, полученный при проектировании, показывают, что при соотношении λ = l2 / l1 > 3 показатель поперечного момента окажется в 5 раз меньше продольного. А в случае когда λ ≤ 3, определить соотношение моментов допустимо, используя эмпирический график, который проиллюстрирован на ИЗОБРАЖЕНИИ 7, где можно проследить зависимость моментов от λ. Под единицей подразумеваются плиты монолитного типа с контурным шарнирным опиранием, двойка предполагает плиты с трехсторонним шарнирным опиранием. График изображает пунктир, который показывает допустимые нижние пределы в процессе подбора арматуры, а в скобках указаны значения λ, что применимо для плит с трехсторонним опиранием. При этом λ < 0,5 m = λ, нижние пределы m = λ/2. Но в этом случае интерес представляет лишь кривая №1, которая отображает теоретические значения. На ней можно видеть подтверждение предположения, что уровень соотношения моментов равен 1 для плиты квадратной формы, по ней можно определить уровень моментов для остальных соотношений ширины и длины.

Формулы и коэффициенты

Схема монтажа перекрытия.

Так, для расчета плиты перекрытия монолитного типа используется помещение, которое имеет длину, равную 8 м, и ширину, равную 5 м. Следовательно, расчетные пролеты окажутся равны l2 = 8 м и l1 = 5 м. При этом λ = 8/5 = 1.6, уровень соотношения моментов равен m2/m1 = 0.49, а вот m2 = 0.49m1. По причине, что общий момент равняется M = m1 + m2, то M = m1 +0.49m1 или m1 = M/1.49, общий момент следует определять по короткой стороне, что обусловлено разумностью решения: Ма = ql12/8 = 775 х 52 / 8 = 2421.875 кгс.м. Дальнейший расчет приведен на ИЗОБРАЖЕНИИ 8.

Так, для армирования одного погонного метра плиты перекрытия следует применить 5 стержней арматуры, диаметр арматуры в этом случае будет равен 10 мм, при этом длина может варьироваться до 5.4 м, а начальный предел может быть равен 5.2 м. Показатель площади сечения продольной арматуры для одного погонного метра равняется 3.93 см2. Поперечное армирование допускает использование 4 стержней. Диаметр арматуры плиты при этом равен 8 мм, максимальная длина равна 8.4 м, при начальном значении в 8.2 м. Сечение поперечной арматуры имеет площадь, равную 2.01 см2, что необходимо для одного погонного метра.

Стоит помнить, что приведенный расчет плиты перекрытия можно считать упрощенным вариантом. При желании, уменьшив сечение используемой арматуры и изменив класс бетона либо и вовсе высоту плиты, можно уменьшить нагрузку, рассмотрев разные варианты загрузки плиты. Вычисления позволят понять, даст ли это какой-то эффект.

Схема строительства дома.

Так, для простоты расчета плиты перекрытия в примере не было учтено влияние площадок, выступающих в качестве опор, а вот если на данные участки сверху станут опираться стены, приближая таким образом плиту к защемлению, тогда при более значительной массе стен данная нагрузка должна быть учтена, это применимо в случае, когда ширина данных опорных участков окажется больше 1/2 ширины стены. В случае когда показатель ширины опорных участков окажется меньше или будет равен 1/2 ширине стены, тогда будет необходим дополнительный расчет стены на прочность. Но даже в этом случае вероятность, что на опорные участки не станет передаваться нагрузка от массы стены, окажется велика.

Пример варианта при конкретной ширине плиты

Возьмем за основу ширину опорных областей плиты, равную 370 мм, что применимо для кирпичных стен, имеющих ширину в 510 мм. Этот вариант расчета предполагает высокую вероятность передачи на опорную область плиты нагрузки от стены. Так, если плита будет удерживать стены, ширина которых равна 510 мм, а высота — 2.8 м, а на стены станет опираться плита следующего этажа, сосредоточенная постоянная нагрузка окажется равна.

Более правильным в этом случае было бы брать во внимание в процессе расчета плиту перекрытия в качестве шарнирно опертого ригеля с консолями, а уровень сосредоточенной нагрузки — в качестве неравномерно распределенной нагрузки на консоли. Кроме того, чем ближе к краю, тем нагрузка была бы больше, но для упрощения можно предположить, что данная нагрузка равномерно распределяется на консолях, составляя 3199.6/0.37 = 8647, 56 кг/м. Уровень момента на шарнирных опорах от подобной нагрузки будет равен 591.926 кгс.м.

Это значит, что:

  • в пролете m1 максимальный момент будет уменьшен и окажется равен m1 = 1717.74 — 591.926 = 1126 кгс.м. Сечение арматуры плиты перекрытия допустимо уменьшить либо и вовсе изменить остальные параметры плиты;
  • изгибающий опорный момент вызовет в верхней части плиты растягивающие напряжения, бетон на это в области растяжения не рассчитан, значит, необходимо дополнительно армировать в верхней части плиты перекрытия монолитного типа или уменьшить значение ширины опорного участка, что позволит уменьшить нагрузку на опорные участки. На случай если верхняя часть изделия не будет дополнительно армирована, плита перекрытия станет образовывать трещины, превратившись в плиту шарнирно-опертого типа без консолей.

Данный вариант расчета загружения следует рассматривать вместе с вариантом, который предполагает, что плита перекрытия уже имеется, а стены — нет, что исключает временную нагрузку на плиту.

1pobetonu.ru

Монолитная плита перекрытия: классификация, формулы для расчетов, расчет плиты перекрытия

Плита перекрытия — это горизонтальная строительная конструкция, которая разделяет этажи друг от друга. Эта конструкция является несущей, она распределяет нагрузки и обеспечивает жесткость здания. Монолитная плита перекрытия — это конструкция, изготовленная на месте строительства здания путем заливки арматуры бетонной смесью.

Нельзя изменять проект дома без согласования с архитектором, потому что эти плиты проектируются специально для конкретного здания, так как для них нужно определить расположение арматуры и способ опоры.

Сталь намного прочнее бетона, именно потому арматурная сетка находится внизу плиты. Эта сетка не должна быть впритык к опалубке, расстояние между арматурой и опалубкой должно быть больше 3 см. Арматуру используют сечением 8−12 мм. Бетон должен иметь толщину не менее 10 см. Плита должна быть забетонирована за один раз. Опалубка выполняется в виде дна и стен будущей плиты. Для долговечности, прочности и надежности перекрытия используют бетона марки М200 и выше. Для этого лучше покупать готовую бетонную смесь на заводе.

Этот тип перекрытий имеет преимущества перед готовыми железобетонными плитами:

  • монолитное перекрытие используют в тех случаях, когда сложно организовать работу подъемного крана на стройплощадке, а также если здание имеет нестандартные размеры и архитектурные формы;
  • благодаря прочной связи элементов плиты обеспечивается высокая жесткость конструкции;
  • экономия денежных средств на электроэнергию, погрузочно-разгрузочные работы, сварочные работы по устранению стыков, меньшие затраты на материалы;
  • все необходимые материалы есть в свободной продаже;
  • нижняя поверхность плиты гладкая и ровная, поэтому проводить штукатурные работы легче;
  • отсутствие стыков повышает звукоизоляцию здания;
  • материал не горит и не подвержен гниению;
  • такой метод построения здания позволяет делать выносные конструкции (балконы), основание которых — единая плита с межэтажным перекрытием. Это повышает прочность и надежность балкона.

Главный недостаток такого типа перекрытия состоит в повышенной сложности работ в холодное время года. Необходимая прочность достигается через 28 дней. Из-за высокой влажности и пониженной температуры бетон будет застывать дольше, что увеличивает сроки строительства. Для исполнения монолитного перекрытия требуются специалисты высокого класса, так как плиты надо усиливать дополнительными опорами.

Еще один недостаток заключается в том, что перед тем, как заливать арматуру бетоном, нужно сделать опалубку. Обычно это занимает много времени и древесного материала. В настоящее время этого недостатка можно избежать. На рынке стройматериалов продают или сдают в прокат готовые элементы щитовой опалубки (фанерные плиты).

Классификация монолитных плит перекрытия

Монолитное перекрытие бывает балочным, безбалочным и ребристым (кессонным).

Балочное перекрытие укладывают двумя способами, в зависимости от типа плиты: ребристая она или гладкая. Если плита ребристая, то балки укладывают перпендикулярно ребрам. Если гладкая, то для достижения большей жесткости балки укладывают перпендикулярно друг другу.

Используют два типа балок: главные (с большим диаметром сечения) и второстепенные (с меньшим диаметром). Балки делают стальными или монолитными. Монолитные балки, в свою очередь, могут иметь разные схемы устройства. Они могут быть уложены в несколько рядов или слоев. Иногда плиту дополнительно усиливают в месте балки дополнительной арматурной сеткой. Стальные балки подпирают само перекрытие или могут находиться в самой монолитной плите. Несущий элемент в балке — двутавр.

При устройстве безбалочного перекрытия используют колонны с капителями. Последние выполнены в виде перевернутой пирамиды. Сечение арматурных штырей 8−12 мм. Капители имеют выпуски штырей с двух сторон, которые входят в сами плиту и укрепляют конструкцию. Плиты имеют каркас в два слоя арматуры. В этом случае плиты имеют толщину от 1/35 до 1/30 длины пролета. В последнее время распространена технология одновременного бетонирования колонн и плит.

Кессонное перекрытие отличается от ребристого количеством направлений ребер: они располагаются в обоих направлениях. Преимущества такого устройства перекрытия в легкости конструкции и прочности на изгиб из-за сетки ребер. При строительстве широкого пролета на месте стыка колонны и перекрытия устанавливается дополнительное арматурное усиление. Штыри колонны проникают в полость опалубки. Кессонное устройство предполагает верхний ряд сплошной арматурной сетки. Диаметр сечения штырей 8 мм.

Расчет параметров монолитной плиты перекрытия

Проект стоит доверить проверенным специалистам, которые грамотно его составят. В проекте приведены расчеты максимальной нагрузки на поперечное сечение плиты. Расчеты будут производиться с учетом индивидуальных предпочтений хозяина будущего здания. Помимо расчетов, в проекте специалисты предоставят свои рекомендации, какие материалы использовать.

Очень важно не допустить ошибку в проекте, поскольку от прочности перекрытия зависит надежность строения. Перекрытие может выдержать определенную нагрузку, выраженную в килограммах на один квадратный метр. Поэтому важно не изменять самостоятельно проект без согласования с архитектором. Любой перенос внутренних перегородок может негативно повлиять на распределение нагрузки на плиту перекрытия. Если превысить нагрузку, то бетон может не выдержать и треснуть, и появится риск обрушения основания этажа. Поэтому в расчетах учитываются характеристики используемых материалов, их общий вес, а также закладывается запас прочности монолитного перекрытия.

В случае усиления монолитного перекрытия железобетонными балками, которые пропускают под перекрытием, рассчитывают такие параметры, как высота, длина и ширина. Для расчетов параметра плиты необходимо знать толщину и площадь заливки бетона.

Расчеты монолитного перекрытия состоят из расчетов его отдельных элементов. В первую очередь делается опалубка. Она должна быть качественной с ровным дном и боковыми стенками. Лучше всего использовать толстую ламинированную фанеру. Для подпорок используют брус сечением 10 на 10 см.

На втором этапе делается армирующая сетка. Для нее используют металлические прутки сечением 8−12 мм, которые перевязывают проволокой. Размер ячеек должен быть 20 см. Ячейки не должны быть частыми, поскольку это увеличивает массу плиты.

Запас прочности рассчитывается исходя из характера эксплуатации здания: нагрузка на перекрытие у частного дома и промышленного здания совершенно разная.

Разработаны специальные компьютерные программы для расчета перекрытий. Однако они не учитывают характеристик используемых материалов. Поэтому прибегнуть к помощи проектировщика придется в любом случае. Это позволит правильно сделать все расчеты и не переплатить за строительство.

Прочность перекрытия рассчитывается исходя из двух факторов: нагрузки плиты и прочности арматуры. Причем прочность арматуры должна быть больше нагрузок на плиту.

Нагрузка на 1 квадратный метр перекрытия рассчитывается исходя из следующих данных:

  • собственный вес перекрытия;
  • временная нагрузка на перекрытие.

В качестве наглядного примера будут приведены расчеты для жилого помещения размерами 6 на 10 метров. Балки расположены на расстоянии 2,5 метра друг от друга. Толщина перекрытия будет равна 80 мм, что отвечает требованиям формулы L/35 (где L — шаг балок): 2,5/35=0,071 (71 мм).

Временная нагрузка для жилого дома по нормативам составляет 150 кг/м2. Коэффициент запаса 1,3. Итого получается нагрузка 195 кг/м2.

Нагрузка от собственного веса перекрытия рассчитывается таким образом: толщина плиты 20 см умножается на величину 2500 — получается 500 кг/м2.

Максимальная нагрузка на монолитную плиту будет равна q=195+500=695 кг/м2.

После получения этих данных просчитывается шаг балок. Это необходимо для оптимального использования материалов (бетона и металла) и правильного распределения нагрузок на балки. Балки должны укладываться через равные расстояния. Обязательно надо выполнять следующее условие: L 1 /L 2 >2, где L 1 — это длина балки, а L 2 — расстояние (шаг) между балками. Длина балок 6 метров. Условие выполнено: 6/2,5=2,4.

Для расчета максимального изгибания плиты необходимы такие данные:

  • расчетное сопротивление бетона R b = 7,7 МПа;
  • арматура класса А400С;
  • расчетное сопротивление арматуры R s = 365 МПа.

Расстояние от арматуры до края плиты 35 мм.

Максимальный изгибающий момент рассчитывается так:

М = q*L 2 2/11. М=695*2,52/11=395 кг/м.

Перекрытие с нижней армированной сеткой должно выполнять следующее условие: a m 0,440.

В противном случае, когда a m >a r, надо повышать марку бетона или увеличивать сечение арматуры.

При значении am=0,042 коэффициент, а равен 0,98.

Площадь рабочей арматуры

Аs = М/(R s * а*h 0) = 395/(36500000*0,98*0,045) = 0,000245 м2 =2,45см2.

На один метр монолитной плиты приходится 5 стержней диаметром 80 мм и площадью 2,45см2.

Погонная нагрузка на балку

695*2,5=1737,5 кг/м.

Балки опираются на стену на 20 см. Расчетная длина балки 6+2*0,2=6,4 м.

Максимальный момент в сечении балки

Мр=q*L2/8.

Мр=1737,5*6,42/8=8896 кг/м.

Требуемый момент сопротивления

Wтр=Мр/(1,12*R).

Wтр=8896/(1,12*21)=378 см3.

Для такого сопротивления подходит двутавр № 27 с моментом сопротивления W=371 см3 и инерцией I=5010 см4.

Прочность балки проверяется таким образом:

R=Mp/1,12*Wtp

R=8896/(1,12*378)=21.

Расчетная R равна нормативной, что говорит о хорошей прочности балки.

Все константы и формулы можно найти в пособии к СНиП 2.03.01−84 «Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры».

Как видно, все формулы достаточно сложные и требуют определенных знаний, поэтому правильным решением будет обратиться к проверенной фирме, которая имеет высококвалифицированных специалистов в области проектирования и строительства.

plita.guru


Смотрите также