Телескоп это прибор для измерения


Что такое телескоп? Виды, характеристики и назначение телескопов :

Телескоп – это уникальный оптический прибор, предназначенный для наблюдения за небесными телами. Использование приборов позволяет рассмотреть самые разные объекты, не только те, которые располагаются недалеко от нас, но и те, которые находятся за тысячи световых лет от нашей планеты. Так что такое телескоп и кто его придумал?

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым – Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Телескоп Галилея

Примерно в те же годы итальянец Галилео занимался шлифовкой линз. В 1609 году он представил обществу новую разработку – телескоп с трехкратным увеличением. Телескоп Галилея имел более высокое качество изображения, чем трубы Липперсхея. Именно детище итальянского ученого получило название «телескоп».

В семнадцатом веке телескопы изготавливались голландскими учеными, но они имели низкое качество изображения. И только Галилею удалось разработать такую методику шлифовки линз, которая позволила увеличить четко объекты. Он смог получить двадцатикратное увеличение, что было в те времена настоящим прорывом в науке. Исходя из этого невозможно сказать, кто изобрел телескоп: если по официальной версии, то именно Галилео представил миру устройство, которое он назвал телескопом, а если смотреть по версии разработки оптического прибора для увеличения объектов, то первым был Липперсхей.

Первые наблюдения за небом

После появления первого телескопа были сделаны уникальные открытия. Галилео применил свою разработку для отслеживания небесных тел. Он первым увидел и зарисовал лунные кратеры, пятна на Солнце, а также рассмотрел звезды Млечного Пути, спутники Юпитера. Телескоп Галилея дал возможность увидеть кольца у Сатурна. К сведению, в мире до сих пор есть телескоп, работающий по тому же принципу, что и устройство Галилея. Он находится в Йоркской обсерватории. Аппарат имеет диаметр 102 сантиметра и исправно служит ученым для отслеживания небесных тел.

Современные телескопы

На протяжении столетий ученые постоянно изменяли устройства телескопов, разрабатывали новые модели, улучшали кратность увеличения. В результате удалось создать малые и большие телескопы, имеющие разное назначение.

Малые обычно применяют для домашних наблюдений за космическими объектами, а также для наблюдения за близкими космическими телами. Большие аппараты позволяют рассмотреть и сделать снимки небесных тел, расположенных в тысячах световых лет от Земли.

Виды телескопов

Существует несколько разновидностей телескопов:

  1. Зеркальные.
  2. Линзовые.
  3. Катадиоптрические.

К линзовым относят рефракторы Галилея. К зеркальным относят устройства рефлекторного типа. А что такое телескоп катадиоптрический? Это уникальная современная разработка, в которой сочетается линзовый и зеркальный прибор.

Линзовые телескопы

Телескопы в астрономии играют важную роль: они позволяют видеть кометы, планеты, звезды и другие космические объекты. Одними из первых разработок были линзовые аппараты.

В каждом телескопе есть линза. Это главная деталь любого устройства. Она преломляет лучи света и собирает их в точке, под названием фокус. Именно в ней строится изображение объекта. Чтобы рассмотреть картинку, используют окуляр.

Линза размещается таким образом, чтобы окуляр и фокус совпадали. В современных моделях для удобного наблюдения в телескоп применяют подвижные окуляры. Они помогают настроить резкость изображения.

Все телескопы обладают аберрацией – искажением рассматриваемого объекта. Линзовые телескопы имеют несколько искажений: хроматическую (искажаются красные и синие лучи) и сферическую аберрацию.

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

В графических телескопах используются сложные конструкции, зеркала со сложными поверхностями, отличающиеся от сферических.

Несмотря на сложность конструкции, зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. На протяжении многих лет он считался самым большим в мире.

Характеристики телескопов

Многие покупают оптические аппараты для наблюдений за космическими телами. При выборе устройства важно знать не только то, что такое телескоп, но и то, какими характеристиками он обладает.

  1. Увеличение. Фокусное расстояние окуляра и объекта – это кратность увеличения телескопа. Если фокусное расстояние объектива два метра, а у окуляра - пять сантиметров, то такое устройство будет обладать сорокакратным увеличением. Если окуляр заменить, то увеличение будет другим.
  2. Разрешение. Как известно, свету свойственны преломление и дифракция. В идеале любое изображение звезды выглядит как диск с несколькими концентрическими кольцами, называемыми дифракционными. Размеры дисков ограничены только возможностями телескопа.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой – меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами – спектрографами. Их подключают к телескопам.

Современный астрономический телескоп – это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Радиотелескопы

Астрономы для своих научных разработок используют огромные радиотелескопы. Чаще всего они выглядят как огромные металлические чаши с параболической формой. Антенны собирают получаемый сигнал и обрабатывают получаемую информацию в изображения. Радиотелескопы могут принимать только одну волну сигналов.

Инфракрасные модели

Ярким примером инфракрасного телескопа является аппарат имени Хаббла, хотя он может быть одновременно и оптическим. Во многом конструкция инфракрасных телескопов схожа с конструкцией оптических зеркальных моделей. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где находится прибор, измеряющий тепло. Полученные тепловые лучи пропускаются через тепловые фильтры. Только после этого происходит фотографирование.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию – фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.

www.syl.ru

ТЕЛЕСКОП

Телескоп – устройство, предназначенное для наблюдения за небесными объектами – планетами, звездами, туманностями и галактиками. Слово «телескоп» образовано от двух греческих слов, обозначающих «вдаль» и «смотрю».

Первое устройство для наблюдения за отдаленными объектами – зрительную трубу – изобрел в начале XVII в. датский оптик И. Липперсгей. Ее схема была следующей: на переднем конце трубы была укреплена двояковыпуклая линза – объектив. Проходя через объектив, свет собирается в фокусе, где получается изображение небесного тела. На другом конце трубы находится окуляр, позволяющий рассматривать изображение в увеличенном виде. Сила увеличения этого оптического прибора зависит от размеров и выпуклости объектива и окуляра.

Вскоре после изобретения трубы о ней узнал итальянский ученый Галилео Галилей. Он увлекся задачей конструирования «перспективы», как тогда называли телескоп. Сначала он соорудил трубу с трехкратным увеличением, а позже довел этот показатель до тридцатикратного.

Галилей первым использовал подзорную трубу для астрономических наблюдений. Впервые он сделал это 7 января 1610 г. Даже скромных возможностей трубы Галилея хватило для нескольких открытий.

Галилей обнаружил, что поверхность Луны неровная и там, как и на Земле, есть горы и долины. Была раскрыта тайна Млечного Пути. Итальянец обнаружил, что Галактика является не чем иным, как собранием громадного множества звезд.

Помимо этого, Галилей открыл сразу четыре спутника Юпитера, которые назвал в честь Великого герцога Тосканского Козимо II Медичи «Медичейскими звездами».

В книге «Звездный вестник» ученый рассказал о своих наблюдениях. Его открытия вызвали ожесточенную полемику. Многие считали открытия Галилея иллюзией, порожденной зрительной трубой.

Галилей продолжил свои наблюдения. Рассматривая в телескоп Сатурн, он обнаружил по обе стороны планеты пятна. Он решил, что это такие же спутники, как у Юпитера. Два года спустя, к своему недоумению, исследователь увидел эту же планету в «полном одиночестве». Он так и не смог найти объяснения загадки. Лишь полвека спустя голландец X. Гюйгенс открыл, что на самом деле это было кольцо, окружающее Сатурн.

Дальнейшие исследования звездного неба позволили Галилею совершить еще несколько открытий. Он заметил, что Венера, «подражая» Луне, меняет свой облик. Это послужило решающим доказательством того, что Венера, в соответствии с теорией Коперника, вращается вокруг Солнца.

Галилей открыл пятна на Солнце и убедился, что Солнце вращается вокруг своей оси.

Независимо от Галилея, и даже раньше него, в 1609 г. внешний лик Луны с помощью телескопа зарисовал английский математик Т. Харриот. А приоритет открытия спутников Юпитера оспаривал у итальянца немец С. Мариус.

Галилей за пропаганду идей Коперника был подвергнут суду инквизиции и публично отрекся от своих взглядов. Церковь реабилитировала его лишь в 1980 г. В том же году журналы его наблюдений заново просмотрели историки астрономии. Они установили, что зимой 1612–1613 гг. ученый наблюдал планету Нептун, правда, приняв ее за звезду.

Эстафету создания телескопов подхватил у Галилея польский астроном?наблюдатель Ян Гевелий. В 1641 г. в Гданьске на крышах трех своих домов он оборудовал обсерваторию. Создание собственных телескопов Гевелий начинал со сравнительно небольших труб длиной 2–4 м. Совершенствуя технику изготовления, он сумел довести размеры телескопов до 10–20 м. Крупнейший из телескопов Гевелия не поместился в его обсерватории, и этот инструмент пришлось установить за городом, укрепив на специальной мачте высотой в 30 м. Длина трубы этого телескопа достигала 45 м.

Гевелий, как и Галилей, использовал в качестве объектива для своих труб двояковыпуклую линзу. Такие линзовые телескопы называют телескопами?рефракторами. Доведя свои телескопы до очень больших размеров, Гевелий смог добиться довольно значительных увеличений при удовлетворительном качестве изображения. Но он не смог расширить возможности своих телескопов для наблюдений слабых объектов. Это связано с тем, что обнаружение слабых объектов требует увеличения поверхности объектива. Но создание больших линзовых телескопов было сопряжено с непреодолимыми техническими трудностями.

Астрономы смогли решить эту проблему, используя в качестве объектива вогнутые зеркала. Изготовление больших вогнутых зеркал намного проще, чем изготовление линз тех же размеров. Телескопы с зеркальными объективами получили название отражательных телескопов, или телескопов?рефлекторов.

В рефлекторе вогнутое зеркало помещается в нижнем конце трубы. Отражаясь от него, свет собирается у верхнего конца трубы, где при помощи небольшого зеркала отводится наблюдателю.

Небольшие телескопы?рефлекторы мастерил в своей домашней лаборатории еще И. Ньютон в 60–70?е годы XVII в. Первые крупные телескопы такого типа изготовил в конце XVIII в. англичанин В. Гершель. У них были огромные объективы, позволявшие наблюдать очень слабые объекты. Самый крупный из зеркальных телескопов Гершеля имел зеркало поперечником 120 см при длине трубы 12 м. Вверх?вниз он двигался при помощи блоков, а вращался вокруг своей оси на специальной платформе. В 1789 г. при помощи своего телескопа Гершель открыл первую планету Солнечной системы, названную Ураном.

У телескопов?рефлекторов тоже есть серьезные недостатки. Поле обозрения таких телескопов, как правило, мало: в него не помещается даже диск Луны. Это вызывает серьезные неудобства, особенно при фотографировании объектов большой площади, поскольку обзор требует смещения всего инструмента. Кроме того, телескопы?рефлекторы в большинстве случаев не пригодны для точных позиционных измерений.

В связи с этим, в начале XIX в. конструкторская мысль вновь обратилась к линзовым телескопам?рефракторам. Их быстрое усовершенствование произошло благодаря мастерству Й. Фраунгофера. Он соединил в объективе линзы из двух различных сортов стекла – кронгласа и флинтгласа. Оба изготавливаются из кварцевого стекла, различаясь лишь применяемыми добавками. Различные коэффициенты преломления света в этих стеклах позволяют резко ослабить окрашивание изображений – основной недостаток линзовых систем, с которым безуспешно боролся Ян Гевелий.

Фраунгофер первым научился изготавливать крупные линзовые объективы, у которых поперечники были в несколько десятков сантиметров. Ему удалось преодолеть трудности, связанные с тонкостями технологии варки стекла и охлаждения готового стеклянного диска. Диск, из которого предстоит отшлифовать объектив, должен быть сварен без пузырей и охлажден таким образом, чтобы в нем не возникло никаких напряжений. Напряжения могут привести к неравномерным изменениям формы объектива, шлифующегося с точностью до десятитысячных долей миллиметра.

Фраунгофер не только усовершенствовал оптику телескопа?рефрактора, но и превратил его в высокоточный измерительный инструмент. Его предшественникам не удалось найти удачного решения, того, как вести телескоп за звездой. Из?за суточного движения небесной сферы звезда постоянно перемещается и, двигаясь по кривой, быстро выходит из поля зрения неподвижного телескопа.

Фраунгофер наклонил ось вращения телескопа, направив ее в полюс мира. Для слежения за звездой достаточно было вращать его вокруг одной только полярной оси. Фраунгофер автоматизировал этот процесс, добавив к телескопу часовой механизм.

Фраунгофер уравновесил все подвижные части телескопа. Несмотря на большой вес, они повинуются легкому нажиму.

В 1824 г. Фраунгофер изготовил первоклассный телескоп для обсерватории в Дерпте.

Во второй половине XIX в. лучшие телескопы изготавливал американский оптикА. Кларк. В 1885 г. он изготовил для пулковского телескопа?рефрактора крупнейший в то время объектив диаметром 76 см. В 1888 г. на горе Гамильтон близ Сан?Франциско был сооружен телескоп с диаметром объектива 92 см работы Кларка. Вскоре на крыше обсерватории Чикагского университета установили телескоп с объективом в 102 см, который также сделал Кларк.

По конструкции все вышеперечисленные телескопы были повторением телескопов Фраунгофера. Они легко управлялись, но из?за поглощения света в стеклах объектива и прогибания труб размеры этих телескопов оказались предельными для конструкций такого рода.

Внимание астрономов?конструкторов вновь обратилось к телескопам?рефлекторам.

В 1919 г. в Калифорнии в Маунт?Вилсоне вступил в строй телескоп?рефлектор с поперечником зеркала 2,5 м. Опыт его изготовления был учтен в проекте 5?метрового телескопа, на сооружение которого ушло четверть века. Он вступил в строй в 1949 г. в обсерватории Маунт?Паломар.

После Великой Отечественной войны в Крымской астрофизической обсерватории Академии наук СССР был введен в строй самый крупный в Европе телескоп?рефлектор с поперечником зеркала 2,6 м. Накопленный опыт позволил советским оптикам построить крупнейший в мире телескоп?рефлектор с поперечником зеркала 6 м. Его 24?метровая труба весит 300 т, а зеркало – 42 т. Зеркало телескопа в любом положении должно находиться в состоянии невесомости. Оно лежит на 60 подпорных точках. Три из них несущие, остальные – опорные.

Ведение инструмента за звездами осуществляет ЭВМ. Она рассчитывает смещение звезд, внося поправки на влияние рефракции и изгиб трубы, и поворачивает телескоп с необходимой скоростью. Масса подвижной части телескопа составляет 650 т.

В отличие от парагалактической монтировки, применявшейся Фраунгофером, в этом телескопе применена азимутальная монтировка. Сам телескоп называется БТА – большой телескоп азимутальный.

После долгих поисков места телескоп БТА был установлен в предгорьях Северного Кавказа близ станицы Зеленчукская на высоте 2070 м и вступил в строй в 1975 году.

В 1931 г. американец К. Янский при помощи антенны, предназначенной для исследования грозовых радиопомех, зарегистрировал радиоизлучение космического происхождения (от Млечного Пути). Длина его волны составляла 14,6 м.

В 1937 г. в США Г. Ребер построил первый радиотелескоп для исследования космического радиоизлучения – рефлектор диаметром 9,5 м.

Важнейшей характеристикой оптических приборов является разрешающая способность. Она равна наименьшему углу, под которым два объекта различаются данным прибором как самостоятельные. Для человеческого глаза в обычных условиях разрешающая способность составляет около Г. Разрешающая способность телескопа увеличивается с увеличением диаметра телескопа и уменьшением длины волны принимаемого излучения. Для оптических телескопов этот показатель ограничен атмосферой и не превышает 0,3 м.

В радиоастрономии этот показатель долгие годы был гораздо ниже, поскольку длина радиоволн в десятки тысяч раз больше, чем длина волн видимого света. В связи с этим возникла необходимость в постройке радиотелескопов с огромными объективами – параболоидами. Но разрешение радиотелескопов долгое время оставалось недостаточным. Оно составляло минуты и десятки минут. Это не давало возможности изучать тонкую структуру наблюдаемых на небе объектов и даже определять их протяженность.

Эта трудность была преодолена сооружением радиоинтерферометров. Они представляют собой два радиотелескопа, отнесенных друг от друга на сотни и тысячи километров. Сравнение одновременных наблюдений на обоих телескопах дает возможность добиться разрешающей способности до 0,00Г. Первый радиоинтерферометр был построен в Австралии в 1948 г. В 1967 г. были проведены первые наблюдения на интерферометрах с независимой записью сигналов и сверхбольшими базами.

В 1953 г. был сооружен первый крестообразный радиотелескоп. Полноповоротный радиотелескоп с диаметром параболоида 76 м был сооружен в английской обсерватории Джодрелл Бэнк. Позже в Эффельсберге (ФРГ), в радиотехническом институте им. М. Планка был построен телескоп с диаметром зеркала 100 м.

Крупнейший неподвижный радиотелескоп с неподвижной сферической чашей диаметром 300 м был построен в специально подготовленном кратере вулкана Аресибо (Пуэрто?Рико).

В 1976 г. вступил в строй радиотелескоп Академии наук СССР с поперечником 600 м – РАТАН?600. Элементы его зеркала – вертикально установленные на круговом фундаменте плоские отражающие панели размером 7,4 на 2,1 метра. Каждая панель смонтирована на отдельной ферме, которая может перемещаться в небольших пределах взад?вперед и поворачиваться в пределах 70°. Число панелей – около тысячи.

Наблюдения выполняются в отдельных секторах РАТАНа. По команде оператора в соответствии с программой ЭВМ панели разворачиваются в строго рассчитанные положения.

Источник: 100 знаменитых изобретений

interpretive.ru

Для чего нам нужен телескоп: какие бывают приборы, как работают и во сколько раз увеличивают

В 17 веке изобрели такой прибор, как телескоп. Для чего нужен он? Благодаря ему стало возможным наблюдение за движением планет, формированием галактик и изучением таинственного космоса. Вид через телескоп открывается невероятный вид, и доступен он любому, интересующемуся астрономией, человеку.

Принцип работы прибора

Что такое телескоп? Это инструмент, с помощью которого можно наблюдать за удаленным предметом, благодаря определенным линзам и электромагнитному излучению самого предмета. Во сколько раз увеличивает подобная техника?

Все зависит от модели: самый простые детские телескопы в 10 раз, а самый мощный Хаббл – более чем в 1000 раз.

Работает телескоп за счет преломления света и набора правильно подобранных линз. Все дело в возможности оптики собирать свет, причем чем больше ее линза, тем больше света она собирает и, соответственно, лучше передает изображение.

Отсюда следует вывод, что именно свет, а точнее его количество, играет роль в качестве конечного изображения и его детализации. За сбор света отвечает диафрагма – пластина с отверстием, через которое проходят световые лучи, поэтому при покупке оптики следует большое внимание уделить именно этой детали.

Важные параметры

Помимо диафрагмы, есть и другие, не менее важные детали. К ним относятся:

  1. Диаметр объектива – он отвечает за способность инструмента собирать свет: чем больше этот параметр, тем меньшие детали можно будет рассмотреть.
  2. Фокусное расстояние – это расстояние от объектива до фокуса, и оно отвечает за силу увеличения прибора.
  3. Окуляр – это две или более линз, скрепленные цилиндром, чья работа — увеличивать полученное изображение.
  4. Линза – формирует изображение. Часто используется линза Барлоу, способная увеличивать расстояние фокуса вдвое.
  5. Диагональное зеркало – с его помощью можно отклонить поток света под углом в 90°. Это удобно, когда надо наблюдать за телами, расположенными строго вертикально над местом наблюдения.
  6. Видоискатели – дополнительный инструмент, который используется в паре с основной техникой.
  7. Выпрямляющие призмы – поскольку изображения выходят перевернутыми снизу-вверх, то эти детали помогают скорректировать и наблюдать за ними под углом в 45°.
  8. Монтировки — устройства, с помощью которого возможно закрепление и наведение техники.

При покупке прибора следует внимательно ознакомится с этими деталями, чтобы выбрать лучший вариант для поставленной цели.

Виды

Как и любая оптика, телескопы бывают:

  1. Любительские – это оптика, которая может увеличивать объекты в несколько сотен раз;
  2. Профессионально-научные – это более качественные и мощные приборы.

Профессионально-научные подразделяются на:

  • оптические – увеличивают более 250 раз, но после этого порога качество картинок начинает ухудшатся;
  • радиотелескопы – они измеряют энергию объектов и предоставляют наиболее качественную картинку;
  • рентгеновские;
  • гамма-телескопы.

Кроме этого, их делят и по оптическому классу:

  • преломляющие – в них как светособирающая деталь, применяется линза большого размера;
  • отражающие – с вогнутым зеркалом, которое собирает световой поток и формирует картинку;
  • зеркально-линзовые – в этой оптики используют оба вида светособирающих деталей одновременно.

Некоторые приборы в космосе нужны, чтобы делать более качественные снимки. Они сгруппированы по частотам излучения:

  • гамма;
  • рентгеновское;
  • ультрафиолетовое;
  • видимое;
  • инфракрасное;
  • микроволновое;
  • радиоизлучение.
Обратите внимание! Определенные оптический прибор улавливает излучение и на его основании строит картинку, которую передает в обсерватории. На Земле самыми популярными приборами являются рефлекторная техника, которая используется и любителями, и профессионалами.

Что видно

Оптические приборы необходимы для изучения космоса. Наиболее удобен для этого телескоп, ведь в него достаточно четко можно рассмотреть:

  1. Луну – специальной оптикой можно увидеть ее подробный рельеф, и даже пепельный свет;
  2. Солнечную систему.

Планеты Солнечной системы, доступные к изучению:

  • Меркурий – его будет видно словно звезду, и только в объективы более 100 мм диаметром можно наблюдать фазу планеты в виде маленького серпа;
  • Венера — это наиярчайшее небесное тело, легко увидеть фазу планеты в любую технику;
  • Марс — будет виден как маленький круг и лишь 2 раза в год;
  • Юпитер — даже в самодельный телескоп Галилей смог рассмотреть его 4 спутника, поэтому легко рассмотреть эту планету и ее кольца в полной мере;
  • Сатурн – самая красивая планета системы. Она будет видна вместе с кольцами даже в объективы в 50-60 мм;
  • Уран и Нептун — эти отдаленные планеты даже в профессиональные объективы выглядят как маленькие звезды или голубые диски.
Важно! Никогда не следует пытаться посмотреть на Солнце с помощью телескопа. Это приведет к необратимому повреждению глаз и ущербу техники.

Что еще можно увидеть в телескоп:

  1. Звездные скопления — их можно рассмотреть в оптику с любым диаметром, однако только в объективы от 100-130 мм диаметром будут видны отдельные звезды.
  2. Галактики — удаленные системы планет и звезд видны даже в простой бинокль, а вот с объективами в 90-100 мм, уже можно наблюдать их форму, а с объективами диаметром 200-250 мм можно рассмотреть даже звездные рукава.
  3. Туманности – это облака из газа и пыли, которые освещаются звездами. В любительскую технику можно рассмотреть их как слабые пятна, а вот более профессиональное оборудование покажет их газовую структуру.
  4. Двойные звёзды – звезды могут быть не только одинокими как Солнце, но и представлять собой систему из двух, трех и более экземпляров. Специальными приборами можно рассмотреть даже двойные звезды как точки, поскольку они находятся на огромном расстоянии от Земли.
  5. Кометы — «хвостатых гостей» можно увидеть и глазами, а вот в окуляры можно разглядеть в деталях даже их хвосты.

Наблюдение за звездным небом – это увлекательное занятие, которое не только развивает, но и дает представление о всей Вселенной. А чтобы увиденное можно было понять, следует использовать в этих занятиях специальную звездную карту.

Как выбрать прибор для наблюдения за планетами

Из-за обилия оптических приборов на рынке достаточно трудно определится, какую же именно технику выбрать для наблюдения планет. Чтобы упростить этот процесс, следует уделить внимание диаметру трубы – именно апертура (диаметр) определяет все оптические возможности прибора.

Чем она больше, тем большее количество света пропускает объектив и, соответственно, тем больше и качественнее будет конечное изображение и возможность увеличивать объекты.

Чтобы вычислить максимальное увеличение, следует пользоваться формулой: 2х D, где D – это диаметральные миллиметры. Также следует исходить из конечной цели, будет ли техника использоваться для наблюдения за природой или за космосом? Каков уровень астронома? Исходя из ответов следует и выбирать. Обращать внимание следует на:

  • апертуру;
  • фокусное расстояние;
  • линзы или зеркала;
  • наличие рефлектора.

Самый важный параметр из всех – это апертура. Что это? Это диаметр объектива. Для чего нужен правильный его размер? Исходя из него можно будет просто смотреть на далекие пятна, или в подробностях изучать небесное тело. Эти модели следует выбрать для начинающих астрономов:

  • Sky-Watcher;
  • Arsenal-GSO;
  • Celestron.

Что лучше подойдет ребенку

Есть ли отличия между взрослой и детской техникой для наблюдения за небом? Конечно, и главное из них – это увеличение. Детские экземпляры никогда не будет увеличивать картинку так же, как и самый дешевый и простой взрослый. Но преимущества детских вариантов в их размерах – они вся достаточно компактны и легко транспортируются. Сквозь такие линзы можно рассмотреть:

  • спутник Земли и его рельеф;
  • созвездия;
  • все планеты в Солнечной системе;
  • Млечный Путь;
  • Скопления звезд;
  • туманности.

Нужен ли телескоп ребенку?

Безусловно, если он проявляет интерес к науке и астрономии.

Несмотря на маленькое изображение, ребенок сможет увидеть почти все небесные тела, что не только удовлетворит его интерес, но и побудит его учиться и познавать мир.

Поэтому к выбору следует подойти внимательно и обратить на некоторые характеристики покупаемой техники:

  • система: линзовая или зеркальная;
  • фокусное расстояние (идеальное для ребенка – это от 520 до 900 мм);
  • диаметр линзы (от 40 до 130 мм).

Какие модели идеально подойдут малышу? Можно выбрать:

  • Bresser Junior;
  • Levenhuk;
  • Bresser Space;
  • Sky-Watcher Dob.

Какой телескоп выбрать для ребенка? Лучше всего взять рефрактор в моделях специально для детей. Он прост в управлении и не требует настроек.

Совет! Существуют приборы с системой автонаведения, которые могут искать объекты на небосклоне самостоятельно по заданным параметрам.

Для фотографии

Как фотографировать через подобную оптику? Для этого нужны телескоп и любой фотоаппарат. Снимки можно делать даже с помощью самой простой модели и мобильного телефона. Например, окулярная проекция получается путем съемки даже на телефон сквозь окуляр. Для более качественных снимков потребуется уже фотоаппарат, у которого можно снять объектив, и тренога, которую следует использовать, чтобы избежать тряски рук. Фотографии также делаются через настроенный окуляр, причем лучше всего снимать в ясную погоду для получения четкой и качественной картинки.

Зачем нужны телескопы, их функции

Что можно увидеть в телескоп

Вывод

Умение видеть не приходит сразу. Опытные астрономы проводят за телескопами много часов прежде чем начинают самостоятельно различать мелкие объекты или отдаленные звезды. Этот талант развивается так же, как и любой другой, поэтому следует запастись терпением и регулярно практиковаться.

uchim.guru

Телескопы: классы, виды, характеристики

» Космодромы и освоение космоса » Телескопы: классы, виды, характеристики

Телескоп — основное «орудие» астронома. Что же это такое? Небесные тела излучают энергию во все стороны, так что в каком-то одном направлении испускается лишь небольшая ее доля. Но и эта часть значительно рассеется, то есть ослабнет, пока доберется до Земли. Следовательно, эту слабую энергию надо собрать и тем или иным образом направить в глаз астронома или на регистрирующий прибор.

Для этого и нужен телескоп.Таким образом, телескоп — это инструмент, который собирает электромагнитное излучение удаленного объекта и направляет его в особую точку — фокус, где образуется увеличенное изображение объекта или формируется усиленный сигнал.

Все телескопы делятся натри класса: преломляющие (рефракторы), отражающие (рефлекторы) и зеркально-линзовые (катадиоптрические).

Рефракторы были первые телескопами, изобретенными человеком. В них свет собирает двояковыпуклая линза, которая выступает в роли объектива. Ее действие строится на основном свойстве выпуклых линз — преломлении световых лучей и их сборе в фокусе. Отсюда и название — рефракторы (от лат. refract — «преломлять»).

В рефлекторных телескопах роль объектива играет вогнутое зеркало. Его задача — собрать свет далекого светила в единой точке. Поместив в данной точке окуляр, можно увидеть изображение этого светила. Все большие астрономические телескопы представляют собой рефлекторы.

В зеркально-линзовых телескопах используются одновременно и линзы, и зеркала. За счет этого они позволяют добиться изображения отличного качества с высоким разрешением (способностью различать мелкие детали объекта).

По особенностям установки телескопы разделяются на наземные и космические. Существует также классификация по назначению этих приборов причем основное разделение касается солнечных и ночных наблюдений. Телескопы для исследования Солнца имеют ряд особенностей связанных со спецификой измерений такого мощного светового и протяженного источника.

Характеристики любительских телескопов.

  • Апертура (диаметр объектива). Определяет светособирающую способность телескопа и диапазон возможных увеличений. Измеряется в миллиметрах, сантиметрах или дюймах. Чем больше диаметр объектива, тем более слабые объекты можно рассмотреть в телескоп.
  • Фокусное расстояние. Это расстояние (обычно указывается в миллиметрах), на котором зеркало или линза объектива строит изображение удаленного объекта. Чем оно больше, тем качественнее изображение. Фокусное расстояние будет определять длину трубы и другие характеристики прибора. От него зависит светосила телескопа (так в астрономии называют отношение диаметра объектива к его фокусному расстоянию).
  • Окуляр. Если основнаяоп-тика (линза объектива, зеркало или система линз и зеркал) служит для формирования изображения, то назначение окуляра заключается в увеличении этого изображения. Окуляры бывают разных диаметров и фокусных расстояний. Чтобы посчитать увеличение, нужно фокусное расстояние объектива телескопа (допустим, 900 мм) разделить на фокусное расстояние окуляра (например, 20 мм). Получаем увеличение 45 крат. Этого вполне достаточно для начинающего юного астронома, чтобы рассмотреть Луну, звездные скопления и массу других интересных вещей.
  • Линза Барлоу. Она устанавливается перед окуляром, благодаря чему возрастает увеличение телескопа. В простых приборах чаще всего используется двукратная линза Барлоу, которая позволяет повысить увеличение телескопа соответственно в два раза.

Современные оптические телескопы для наблюдения звезд и внегалактических объектов имеют общие характерные особенности. У крупнейших из них — схожие оптические схемы, размер главного зеркала — 8—11 м, встроенная система так называемой активной оптики. В некоторых случаях несколько телескопов объединяются в один комплекс, образуя своеобразный звездный интерферометр.

Это интересно...

Если бы Земля вращалась в обратную сторону, то продолжительность года была меньше на 2 дня.

kosmokid.ru


Смотрите также